Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2018 Выпуск 6

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

D. A. Perminov, A. P. Druzhkov, V. L. Arbuzov

POSITRON ANNIHILATION STUDY OF THE MICROSTRUCTURAL EVOLUTION OF DEFORMED AUSTENITIC IRON-NICKEL ALLOYS

DOI: 10.17804/2410-9908.2018.6.126-135

The paper studies the evolution of the imperfect structure of Fe-Ni alloys under plastic deformation and subsequent isochronal annealing by positron annihilation spectroscopy. The stages corresponding to the annealing of vacancy-type defects, the heterogeneous nucleation of Ni3Ti precipitate particles and recrystallization are determined. It is demonstrated that titanium atoms interact with vacancy defect, thus enhancing the accumulation of vacancy-type defects formed during deformation and their thermal stability. The formation of vacancy–titanium-atom mobile complexes in the process of annealing leads to the segregation of titanium at dislocations and the heterogeneous nucleation of Ni3Ti precipitate particles. These particles suppress the capture of positrons by dislocations. At the same time, this effect essentially depends on the dislocation structure present in the alloys. At temperatures exceeding 850 K, the precipitation particles coarsen due to thermally induced aging. As a result, the sensitivity of positrons to dislocations is partially restored.

Acknowledgement: The work was performed within the state assignment from FASO Russia (Spin, No. 01201463330) and partially supported by the RFBR (project No. 18-02-00270).

Keywords: iron-nickel alloys, plastic deformation, dislocations, segregation, positron annihilation

References:

1. Dlubek G., Brummer O., Hensel E. Positron-annihilation investigation for an estimation of dislocation density and vacancy concentration of plastically deformed polycrystalline Ni of different purity. Physica Status Solidi A-Applied Research, 1976, vol. 34, no. 2, pp. 737–746. DOI: 10.1002/pssa.2210340239.
2. Dlubek G., Krauser R., Brummer O., Michno Z., Gorecki T. Impurity-induced vacancy clustering in cold-rolled nickel alloys as studied by positron annihilation techniques. Journal of Physics F: Metal Physics, 1987, vol. 17, pp. 1333–1347. DOI: 10.1088/0305-4608/17/6/008.
3. Grafutin V.I., Prokop’ev E.P. Positron annihilation spectroscopy in materials structure studies. Phys. Usp., 2002, vol. 45, no. 1, pp. 59–74. DOI: 10.1070/PU2002v045n01ABEH000971.
4. Seeger A., Banhard F. Defect studies by positron annihilation – technique, achievement, problems, perspectives. Helvetica Physica Acta, 1990, vol. 63, pp. 403–428.
5. Wider T., Hansen S., Holzwarth U., Maier K. Sensitivity of positron annihilation to plastic deformation. Physical Review B, 1998, vol. 57, no. 9, pp. 5126–5139. DOI: 10.1103/PhysRevB.57.5126.
6. Arbuzov V.L., Druzhkov A.P., Pecherkina N.L., Danilov S.Е., Perminov D.А., Sagaadze V.V. Positron annihilation study of the microstructere evolution in deformed Fe-Ni austenitic alloys containing titanium. The Physics of Metals and Metallography, 2001, vol. 92, no. 1, pp. 70–76.
7. Druzhkov A.P., Perminov D.A. Positron annihilation studies of microstructural changes in cold-worked Fe–Ni-base aging alloys. Materials Science and Engineering: A, 2010, vol. 527, pp. 3877–3885. DOI: 10.1016/j.msea.2010.03.083.
8. Eldrup M., Singh B.N. Studies of defects and defect agglomerates by positron annihilation spectroscopy. Journal of Nuclear Materials, 1997, vol. 251, pp. 132–138. DOI: 10.1016/S0022-3115(97)00221-3.
9. Druzhkov A.P., Perminov D.A., Pecherkina N.L. Positron annihilation spectroscopy characterization of effect of intermetallic nanoparticles on accumulation and annealing of vacancy defects in electron-irradiated Fe-Ni-Al alloy. Philosophical Magazine, 2008, vol. 88, pp. 959–976. DOI: 10.1080/14786430802014670.
10. Druzhkov A.P., Klotsman S.M., Pushin V.G., Likhodeevskaya E.I. Study of defect annealing in plastically deformed nickel by positron annigilation method. Fizika Metallov i Metallovedenie, 1987, vol. 64, no. 3, pp. 525–532. (In Russian).
11. Druzhkov A.P., Arbuzov V.L., Perminov D.A. Positron annihilation study of effects of Ti and plastic deformation on defect accumulation and annealing in electron-irradiated austenitic steels and alloys. Journal of Nuclear Materials, 2005, vol. 341, pp. 153–163. DOI: 10.1016/j.jnucmat.2005.01.021.
12. Van Bueren H.G. Imperfections in crystals, Amsterdam, North-Holland Publishing Company, 1960.
13. Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Recristallizatsiya metallov i splavov [Recrystallization of Metals and Alloys]. Moscow, MISiS Publ., 2005, 432 p. (In Russian).
 

   

Д. А. Перминов, А. П. Дружков, В. Л. Арбузов

ПОЗИТРОННЫЕ АННИГИЛЯЦИОННЫЕ ИССЛЕДОВАНИЯ ЭВОЛЮЦИИ МИКРОСТРУКТУРЫ ДЕФОРМИРОВАННЫХ АУСТЕНИТНЫХ ЖЕЛЕЗО-НИКЕЛЕВЫХ СПЛАВОВ

Работа посвящена исследованию эволюции дефектной структуры Fe-Ni сплавов при пластической деформации и последующем изохронном отжиге методом позитронной аннигиляционной спектроскопии. Были определены стадии, соответствующие отжигу дефектов вакансионного типа, гетерогенному зарождению частиц выделений Ni3Ti и рекристаллизации. Было показано, что атомы титана взаимодействуют с вакансионными дефектами, усиливая накопление дефектов вакансионного типа, образующихся при деформации, и их термическую стабильность. Образование подвижных комплексов вакансия - атом титана в процессе отжига приводит к сегрегации титана на стоках и гетерогенному зарождению частиц интерметаллидных выделений Ni3Ti. Эти частицы подавляют захват позитронов дислокациями. При этом, данный эффект существенно зависит от дислокационной структуры, присутствующей в сплавах. При температурах выше 850 К происходит укрупнение частиц выделений благодаря термически-индуцированному старению. В результате этого чувствительность позитронов к дислокациям частично восстанавливается.

Благодарность: Работа выполнена в рамках государственного задания ФАНО России (тема “Спин” № 01201463330) при частичной поддержке РФФИ (проект № 18-02-00270).

Ключевые слова: железо-никелевые сплавы, пластическая деформация, дислокации, сегрегация, аннигиляция позитронов

Библиография:

1. Dlubek G., Brummer O., Hensel E. Positron-annihilation investigation for an estimation of dislocation density and vacancy concentration of plastically deformed polycrystalline Ni of different purity // Physica Status Solidi A-Applied Research. – 1976. – Vol. 34, no. 2. – P. 737–746. – DOI: 10.1002/pssa.2210340239.1. Dlubek G., Brummer O., Hensel E. Positron-annihilation investigation for an estimation of dislocation density and vacancy concentration of plastically deformed polycrystalline Ni of different purity // Physica Status Solidi A-Applied Research. – 1976. – Vol. 34, no. 2. – P. 737–746. – DOI: 10.1002/pssa.2210340239.
2. Impurity-induced vacancy clustering in cold-rolled nickel alloys as studied by positron annihilation techniques / G. Dlubek, R. Krauser, O. Brummer, Z. Michno, T. Gorecki // Journal of Physics F: Metal Physics. – 1987. – Vol. 17, no. 1. – P. 1333–1347. – DOI: 10.1088/0305-4608/17/6/008.
3. Grafutin V. I., Prokop’ev E. P. Positron annihilation spectroscopy in materials structure studies. – Phys. Usp. – 2002 – Vol. 45, no. 1. – P. 59–74. – DOI: 10.1070/PU2002v045n01ABEH000971.
4. Seeger A., Banhard F. Defect studies by positron annihilation – technique, achievement, problems, perspectives // Helvetica Physica Acta. – 1990. – Vol. 63. – P. 403–428.
5. Sensitivity of positron annihilation to plastic deformation / T. Wider, S. Hansen, U. Holzwarth, K. Maier // Physical Review B. – 1998. – Vol. 57, no. 9. – P. 5126–5139. – DOI: 10.1103/PhysRevB.57.5126.
6. Positron annihilation study of the microstructere evolution in deformed Fe-Ni austenitic alloys containing titanium / V. L. Arbuzov, A. P. Druzhkov, N. L. Pecherkina, S. Е. Danilov, D. А. Perminov, V. V. Sagaadze // The Physics of Metals and Metallography. – 2001. – Vol. 92, no 1. – P. 70–76.
7. Druzhkov A. P., Perminov D. A. Positron annihilation studies of microstructural changes in cold-worked Fe–Ni-base aging alloys // Materials Science and Engineering: A. – 2010. – Vol. 527. – P. 3877–3885. – DOI: 10.1016/j.msea.2010.03.083.
8. Eldrup M., Singh B. N. Studies of defects and defect agglomerates by positron annihilation spectroscopy // Journal of Nuclear Materials. – 1997. – Vol. 251. – P. 132–138. – DOI: 10.1016/S0022-3115(97)00221-3.
9. Druzhkov A. P., Perminov D. A., Pecherkina N. L. Positron annihilation spectroscopy characterization of effect of intermetallic nanoparticles on accumulation and annealing of vacancy defects in electron-irradiated Fe-Ni-Al alloy // Philosophical Magazine. – 2008. – Vol. 88. – P. 959–976. – DOI: 10.1080/14786430802014670.
10. Study of defect annealing in plastically deformed nickel by positron annigilation method / A. P. Druzhkov, S. M. Klotsman, V. G. Pushin, E. I. Likhodeevskaya // Fizika Metallov i Metallovedenie. – 1987. – Vol. 64, no 3. – P. 525–532.
11. Druzhkov A. P., Arbuzov V. L., Perminov D. A. Positron annihilation study of effects of Ti and plastic deformation on defect accumulation and annealing in electron-irradiated austenitic steels and alloys // Journal of Nuclear Materials. – 2005. – Vol. 341. – P. 153–163. – DOI: 10.1016/j.jnucmat.2005.01.021.
12. Ван-Бюрен Х. Г. Дефекты в кристаллах / пер. с англ. под ред. А. Н. Орлов, В. Р. Регель. – М. : Изд-во иностр. лит., 1962. – 584 с.
13. Горелик С. С., Добаткин С. В., Капуткина Л. М. Рекристаллизация металлов и сплавов. – 3-е изд., перераб и доп. – М. : МИСИС, 2005. – 432 с. – ISBN 5-87623-103-7.

   
PDF      

Библиографическая ссылка на статью

Perminov D. A., Druzhkov A. P., Arbuzov V. L. Positron Annihilation Study of the Microstructural Evolution of Deformed Austenitic Iron-Nickel Alloys // Diagnostics, Resource and Mechanics of materials and structures. - 2018. - Iss. 6. - P. 126-135. -
DOI: 10.17804/2410-9908.2018.6.126-135. -
URL: http://dream-journal.org/issues/2018-6/2018-6_220.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru