Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2018 Выпуск 6

2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

T. A. Brusentseva, E. O. Smirnova, I. A. Veretennikova

STYDYING THE INFLUENCE OF THE NATURE OF THE FILLER ON THE MECHANICAL PROPERTIES OF THE DER-330 EPOXY RESIN

The purpose of this paper is to investigate the effect of the nature of various fillers on the mechanical properties of the DER-330 epoxy resin. The A-380 and A-200 hydrophilic silica powders, alumina-based powders in the form of spherical particles and nanofibers, and aluminum nitride powder are used as fillers. The mass content of nanoadditives in the matrix ranges from 0 to 4 %. In the first series of experiments, the influence of the nature of the filler on the mechanical properties of the DER-330 epoxy resin under conditions of three-point bending is investigated. In the second part of the study, the influence of the nature of the filler on the hardness and the normal modulus of elasticity is investigated by the microindentation method. It has been experimentally established that the investigated solid nanopowders reinforce the epoxy resin provided that they are nanosized, effectively dispersed and uniformly distributed in the matrix. In addition, for each filler, there is an optimal content enabling the material to exhibits maximum strength characteristics.

The work was performed within state assignment No. АААА-А17-117030610134-9 (specimen preparation and experimenting under conditions of three-pint bending) and supported by RFBR grant No. 16-08-01154 А (indentation experiments).

Keywords: epoxy resin, nanofiller, modulus of elasticity, stress at failure, microindentation

Bibliography:

1. Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in Polymer Science, 2003, vol. 28, iss. 1, pp. 83–114. DOI: 10.1016/S0079-6700(02)00019-9.
2. Rahman A., Ali I., Al Zahrani S.M., Eleithy R.H. A review of the applications of nanocarbon polymer composites. Nano, 2011, vol. 06, no. 03, pp 185–203. DOI: 10.1142/S179329201100255X.
3. Hashin Z. The elastic module of heterogeneous materials. J. Appl. Mech., 1962, vol. 29, pp. 143–150.
4. Ishai O., Cohen L.J. Strain-rate dependence of the elastic modulus of filled and porous epoxy composites. Int. J. Mech. Sci., 1967, vol. 9, iss. 9, pp. 605–608. DOI: 10.1016/0020-7403(67)90065-3.
5. Paul B. Prediction of elastic constants of multiphase materials. Trans. AIME, 1960, vol. 218, pp. 36–41.
6. Omrani A., Rostami A.A. Understanding the effect of nano-Al2O3 addition upon the properties of epoxy-based hybrid composites. Materials Science and Engineering A, 2009, vol. 517, iss. 1–2, pp. 185–190. DOI: 10.1016/j.msea.2009.03.076.
7. Chen C.H., Jian J.Y., Yen F.S. Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites. Composites Part A: Applied Science and Manufacturing, vol. 40, no. 4, pp. 463–468. DOI: 10.1016/j.compositesa.2009.01.010.
8. Al-Turaif Hamad A. Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Progress in Organic Coatings, 2010, vol. 69, no. 3, pp. 241–246. DOI: 10.1016/j.porgcoat.2010.05.011.
8. Al-Turaif Hamad A. Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Progress in Organic Coatings, 2010, vol. 69, no. 3, pp. 241–246. DOI: 10.1016/j.porgcoat.2010.05.011.
9. Adachi T., Osaki M., Araki W., Kwon S-C. Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites. Acta Materialia, 2008, vol. 56, no. 9, pp. 2101–2109. DOI: 10.1016/j.actamat.2008.01.002.
10. Li H., Zhang Z., Ma X., Hu M., Wang X., Fan P. Synthesis and characterization of epoxy resin modified with nano-SiO2 and γ-glycidoxypropyltrimethoxy silane. Surf. Coat. Tech., 2007, no. 201, pp. 5269 – 5272. DOI: 10.1016/j.surfcoat.2006.07.143.
11. Hsieh T.H., Kinloch A.J., Masania K., Sohn L.J., Taylor A.C. The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci., 2010, vol. 45, pp. 1193–1210. DOI: 10.1007/s10853-009-4064-9.
12. Oliver W.C., Pharr G.M. An improved technique for determining hard-ness and elastic modulus using load–displacement sensing indentation experiments. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583. DOI: 10.1557/JMR.1992.1564.
13. Brusentseva Т.А., Filippov A.A., Fomin V.M., Malykhin E.V., Vaganova Т.А. Influence of the nanosized filler nature on the mechanical properties of epoxy-anhydride polymer composites. Nanotechnologies in Russia, 2014, vol. 9, iss. 11–12, pp 638–644. DOI: 10.1134/S1995078014060068.
14. Lipatov Yu.S. Fiziko-khimicheskie osnovy napolneniya polimerov [Physico-Chemical Bases of Polymer Filling]. Moscow, Khimiya Publ., 1991. (In Russian).
15. Suvorov A.L., Dul’tseva L.D., Ovchinnikova G.I., Khrustaleva E.A., Ostanina N.Yu., Abramova V.I. Preparation and Properties of Polymers Derived from Epoxy Resins and Oligochelatotitanophenylenesiloxanes. Russian Journal of Applied Chemistry, 2003, vol. 76, no. 11, pp. 1844–1849. DOI: 10.1023/B:RJAC.0000018697.76047.67.
16. Hoebbel D., Nacken M., Schidt H. On the influence of metal alkoxides on the epoxide ring-opening and condensation reactions of 3-glycidoxypropyltrimethoxysilane. J. Sol-Gel Sci. Technol., 2001, vol. 21, no. 3, pp. 178–187. DOI: 10.1023/A:1011274301896.

   

Т. А. Брусенцева, Е. О. Смирнова, И. А. Веретенникова

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРИРОДЫ НАПОЛНИТЕЛЯ НА МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭПОКСИДНОЙ СМОЛЫ DER-330

Исследовано влияние природы различных наполнителей на механические характеристики эпоксидной смолы DER-330. В качестве наполнителей использованы гидрофильные порошки оксида кремния А-380 и А-200, порошки на основе оксида алюминия в виде сферических частиц и нановолокон, порошок нитрида алюминия. Массовое содержание нанодобавок в матрице варьировалось от 0 до 4 %. В первой серии экспериментов исследовано влияние природы наполнителя на механические характеристики эпоксидной смолы DER-330 в режиме трехточечного изгиба. Во второй части работы методом микроиндентирования исследовано влияние природы наполнителя на твердость и нормальный модуль упругости. Экспериментально установлено, что исследуемые твердые нанопорошки усиливают эпоксидную смолу при условии, что они имеют наноразмеры, эффективно диспергированы и однородно распределены в матрице. Кроме того, для каждого наполнителя существует оптимальное содержание, при котором материал проявляет максимальные прочностные характеристики.

Благодарности: Работа выполнена в части изготовления образцов и проведения экспериментов в режиме трехточечного изгиба в рамках государственного задания № АААА-А17-117030610134-9, в части проведения экспериментов по индентированию – при поддержке гранта РФФИ № 16-08-01154 А.

Ключевые слова: эпоксидная смола, нанонаполнитель, модуль упругости, напряжение при разрушении, микроиндентирование

Библиография:

1.  Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale // Progress in Polymer Science. – 2003. – Vol. 28, iss. 1. – P. 83–114. – DOI: 10.1016/S0079-6700(02)00019-9.

2.  A review of the applications of nanocarbon polymer composites / A. Rahman, I. Ali, S. M. Al Zahrani, R. H. Eleithy // Nano. – 2011. – Vol. 06, no. 03. – P. 185–203. – DOI: 10.1142/S179329201100255X.

3.  Hashin Z. The elastic module of heterogeneous materials // J. Appl. Mech. – 1962. – Vol. 29. – P. 143–150.

4.  Ishai O., Cohen L. J. Strain-rate dependence of the elastic modulus of filled and porous epoxy composites // Int. J. Mech. Sci. – 1967. – Vol. 9, iss. 9. – P. 605–608. – DOI: 10.1016/0020-7403(67)90065-3.

5.  Paul B. Prediction of elastic constants of multiphase materials // Trans. AIME. – 1960. – Vol. 218. – P. 36-41.

6.  Omrani A., Rostami A. A. Understanding the effect of nano-Al2O3 addition upon the properties of epoxy-based hybrid composites // Materials Science and Engineering A. – 2009. – Vol. 517. – P. 185–190. – DOI: 10.1016/j.msea.2009.03.076.

7.  Chen C. H., Jian J. Y., Yen F. S. Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites // Composites Part A: Applied Science and Manufacturing. – 2009. – Vol. 40, no. 4. – P. 463–468. DOI: 10.1016/j.compositesa.2009.01.010.

8.  Al-Turaif Hamad A. Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin // Progress in Organic Coatings. – 2010. – Vol. 69, no. 3. – P. 241–246. – DOI: 10.1016/j.porgcoat.2010.05.011.

9.  Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites / T. Adachi, M. Osaki, W. Araki, S-C. Kwon // Acta Materialia. – 2008. – Vol. 56, no. 9. – P. 2101–2109. – DOI: 10.1016/j.actamat.2008.01.002.

10.Synthesis and characterization of epoxy resin modified with nano-SiO2 and γ-glycidoxypropyltrimethoxy silane / H. Li, Z. Zhang, X. Ma, M. Hu, X. Wang, P. Fan // Surf. Coat. Tech. – 2007. – No. 201. – P. 5269–5272. – DOI: 10.1016/j.surfcoat.2006.07.143.

11.The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles / T. H. Hsieh, A. J. Kinloch, K. Masania, L. J. Sohn, A. C. Taylor // J. Mater. Sci. – 2010. – Vol. 45. – P. 1193–1210. – DOI: 10.1007/s10853-009-4064-9.

12.Oliver W. C., Pharr G. M. An improved technique for determining hard-ness and elastic modulus using load–displacement sensing indentation experiments // Mater.Res. – 1992. – Vol. 7, no. 6. – P. 1564–1583. – DOI: 10.1557/JMR.1992.1564.

13.Influence of the nanosized filler nature on the mechanical properties of epoxy-anhydride polymer composites / Т. А. Brusentseva, A. A. Filippov, V. M. Fomin, E. V. Malykhin, Т. А. Vaganova // Nanotechnologies in Russia. – 2014. – Vol. 9, iss. 11–12. – P. 638–644. – DOI: 10.1134/S1995078014060068.

14.Липатов Ю.С. Физико-химические основы наполнения полимеров . – М. : Химия. – 1991. – 257 с.Липатов Ю. С. Физико-химические основы наполнения полимеров. – М. : Химия, 1991. – 257 с.

15.Получение и изучение свойств полимеров на основе эпоксидных смол и олигохелатотатанофениленсилоксанов / А.Л. Суворов, Л.Д. Дульцева, Г.И. Овчиннокова., Е.А. Хрусталева, Н.Ю. Останина, В.И. Абрамова // Журнал прикладной химии. – 2003. – Т. 76. – № 11. – С. 1895-1900.1.      Preparation and Properties of Polymers Derived from Epoxy Resins and Oligochelatotitanophenylenesiloxanes / A. L. Suvorov, L. D. Dul'tseva, G. I. Ovchinnikova, E. A. Khrustaleva, N. Yu. Ostanina, V. I. Abramova // Russian Journal of Applied Chemistry. – 2003. – Vol. 76, no. 11. – P. 1844–1849. –DOI: 10.1023/B:RJAC.0000018697.76047.67.

16.Hoebbel D., Nacken M., Schidt H. On the influence of metal alkoxides on the epoxide ring-opening and condensation reactions of 3-glycidoxypropyltrimethoxysilane // J. Sol-Gel Sci. Technol. – 2001. – Vol. 21, no. 3. – P. 178–187. – DOI: 10.1023/A:1011274301896.

   
PDF        

 

импакт-фактор
РИНЦ 0.284

 

МРДМК 2018 title=
МРДМК 2018

ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук
Главный редактор:  Э.C. Горкунов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2019, www.imach.uran.ru