Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2018 Выпуск 6

2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. M. Polyanskiy, V. A. Polyanskiy, K. P. Frolova, Yu. A. Yakovlev

HYDROGEN DIAGNOSTICS OF METALS AND ALLOYS

Within the framework of this paper, we review the development of the problem of hydrogen diagnostics for metals. Metal sample enrichment techniques based on the hydrogen vacuum extraction method had been used for a long time. The development of industrial control technologies has led to the almost complete replacement of vacuum techniques with atmospheric ones. As a result, systematic errors have occurred. These errors lead to multiple differences of certified hydrogen concentration values from measured ones for standard samples.

In this paper, we analyze reasons for the genesis of systematic errors observed for hydrogen measurements while applying the thermal conductivity cell technique. As a result, we have demonstrated that measurements resulting from sample heating and melting in an inert gas flow depend on the heat capacity of the sample and the surface temperature of the melting pot. This explains multiple errors and even negative values in measurements of low hydrogen concentrations.

The research was supported by the RFBR, projects No. 18-08-00201, 18-31-00329 and 17-08-00783.

Keywords: hydrogen diagnostics, hydrogen analyzer, extraction in an inert gas flow, thermal conductivity cell

Bibliography:

  1. Patent 670,775 U.S. Process of making alloys of iron and hydrogen / G. W. Gesner; published 26.03.1901.
  2. Gesner G.W. Process of making alloys of iron and hydrogen. US Patent 670,775, 1901.
  3. Kinzel A.B. Method of casting steel ingots. US Patent 1,888, 1932.
  4. Andrew T., Thomas K.B. Process of manufacturing steel. US Patent 695,264, 1902.
  5. Bernhard O. Leitfaden für Gießereilaboratorien, Berlin, Heidelberg, Springer, 1915. 44p. ISBN 978-3-662-40626-7. DOI: 10.1007/978-3-662-41106-3.Keiichi O. On the importancy of hydrogen-brittleness as a defect in steel qualities. Tetsu-to-Hagane, 1938, vol. 24, no. 11, pp. 1005–1013. DOI: 10.2355/tetsutohagane1915.24.11_1005.
  6. De Haas W.J., Hadfield R. On the Effect of the Temperature of Liquid Hydrogen (–252.8oC) on the Tensile Properties of Forty-One Specimens of Metals Comprising (a) pure iron 99.85%; (b) four carbon steels; (c) thirty alloy steels; (d) copper and nickel; (e) four non-ferrous alloys. Philosophical Transactions of the Royal Society of London. Series A, 1934, vol. 232, pp. 297–332.
  7. Zapffe C.A., Sims C.E. Hydrogen embrittlement, internal stress and defects in steel. Trans. AIME, 1941, vol. 145, no. 1941, pp. 225–271.
  8. Jordan L., Eckman J.R. Determination of Oxygen and Hydrogen in Metals by Fusion in Vacuum. Industrial & Engineering Chemistry, 1926, vol. 18, no. 3, pp. 279–282. DOI: 10.1021/ie50195a017.
  9. Brown D. Apparatus for determining hydrogen in steel. US Patent 2,387,878, 1945.
  10. Scafe R.M. Determination of Hydrogen in Steel Sampling and Analysis by Vacuum Extraction. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 1945, vol. 162, p. 375.
  11. Olof R. Continuously-operating gas-analyzing apparatus. US Patent 1,644,951, 1927.
  12. Willenborg W.J. Method of and means for analyzing gases by differential thermal conductivity measurements. US Patent 2,042,646, 1936.
  13. Stewart A.T., Squires G.L. Analysis of ortho-and para-hydrogen mixtures by the thermal conductivity method. Journal of Scientific Instruments, 1955, vol. 32, no. 1, pp. 26.
  14. Hulsberg H.A. Hydrogen analyzer. US Patent 2,671,337, 1954.
  15. Willenborg W.J. Single cell thermal conductivity measurements. US Patent 2,255,551, 1941.
  16. Nolan D., Pitrun M. Diffusible hydrogen testing in Australia. Welding in the World, 2004, vol. 48, no. 1–2, pp. 14–20. DOI: 10.1007/BF03266409.
  17. Konopel’ko L.A., Polyanskii A.M., Polyanskii V.A., Yakovlev Y.A. New Metrological Support for Measurements of the Concentration of Hydrogen in Solid Samples. Measurement Techniques, 2018, vol. 60, no. 12, pp. 1222–1227. DOI: 10.1007/s11018-018-1343-3.
  18. Hassel A.W., Merzlikin S.V., Mingers A., Georges C., Flock J., Bergers K., Zwettler F. Methodology of Hydrogen Measurements in Coated Steels, Luxembourg, Publications Office of the European Union, 2013, 161 p. ISBN 978-92-79-29712-0.
  19. Andronov D.Yu., Arseniev D.G., Polyanskiy A.M., Polyanskiy V.A., Yakovlev Yu.A. Application of multichannel diffusion model to analysis of hydrogen measurements in solid. International Journal of Hydrogen Energy, 2017, vol. 42, no. 1, pp. 699–710. DOI: 10.1016/2016.10.126.
  20. Titov V.V., Khutoretskii G.M., Zagorodnaya G.A. et al. Turbogeneratory. Raschet i konstruktsiya [Turbogenerators: Calculation and Design, N.P. Ivanov and R.A. Lyuter, eds.]. Leningrad, Energiya Publ., 1967.
  21. Abarca A.N. High Precision Flow Compensated Thermal Conductivity Detector for Gas Sensing with Read-out Circuit. Master thesis, Delft, 2015.
  22. GOST 21132.1-98. Aluminum and aluminum alloys. Methods for determination of hydrogen in solid metal by vacuum hot extraction. (In Russian).
  23. Polyanskii A.M., Polyanskii V.A., Yakovlev Yu.A., Study of specimen degassing completeness in analyzing hydrogen content in aluminum alloys. Metallurg, 2011, no. 4, pp. 87–92. (In Russian).
  24. Konopelko L.A., Polyanskiy A.M., Polyanskiy V.A., Yakovlev Yu.A. A metrological base for measuring hydrogen concentration for further development of technologies. In: Materialy i tekhnologii dlya Arktiki [Materials and Technologies for the Arctic: international conference proceedings]. St. Petersburg, 2017, pp. 260–267. ISBN 978-5-900791-36-4. (In Russian).
  25. Purcell J.E., Ettre L.S. Analysis of hydrogen with thermal conductivity detectors. Journal of Chromatographic Science, 1965, vol. 3, no. 2, pp. 69–71. DOI: 10.1093/3.2.69.
  26. Watanabe M., Inoue R., Ichikawa D., Furusaki K. Development of Thermal Conductivity Type Hydrogen Sensor. ECS Transactions, 2010, vol. 28, no. 20, pp. 31–42. DOI: 10.1149/1.3489930
 

А. М. Полянский, В. А. Полянский, К. П. Фролова, Ю. А. Яковлев

ВОДОРОДНАЯ ДИАГНОСТИКА МЕТАЛЛОВ И СПЛАВОВ

В статье дан обзор развития водородной диагностики металлов. Долгое время использовались методы обогащения пробы за счет вакуумной экстракции водорода из металлических образцов. Развитие технологий промышленного контроля привело к практически полному вытеснению вакуумных методик «атмосферными». В результате появились систематические ошибки, дающие многократную разницу между аттестованными и измеренными значениями стандартных образцов при межлабораторных сличениях.

Проведен анализ причин возникновения систематических ошибок, наблюдаемых при измерениях концентрации водорода с помощью ячейки теплопроводности. Показано, что результат измерения приборами, работающими на принципе нагрева и плавления образцов в газе-носителе, зависит не только от стабильности электронных систем и датчиков температуры образца, но и от его теплоемкости, а также состояния поверхности тигля. Этим объясняются многократные систематические ошибки измерения малых концентраций и отрицательные концентрации водорода.

Благодарности: Исследование выполнено при поддержке РФФИ, проекты No. 18-08-00201, 18-31-00329 и 17-08-00783.

Ключевые слова: водородная диагностика, анализатор водорода, экстракция в потоке газа-носителя, ячейка теплопроводности

Библиография:

  1. Patent 670,775 U.S. Process of making alloys of iron and hydrogen / G. W. Gesner; published 26.03.1901.
  2. Process of making alloys of iron and hydrogen : pat. 670,775 U.S. / Gesner G. W. – Publ. 26.03.1901.
  3. Method of casting steel ingots : pat. 1,888,132 U.S. / Kinzel A. B. – Publ. 15.11.1932.
  4. Process of manufacturing steel : pat. 695,264 U.S. / Andrew T., Thomas K. B. – Publ. 11.03.1902.
  5. Bernhard O. Leitfaden für Gießereilaboratorien. – Berlin, Heidelberg : Springer, 1915. – 44 p. – ISBN 978-3-662-40626-7. – DOI: 10.1007/978-3-662-41106-3.
  6. Keiichi O. On the importancy of hydrogen-brittleness as a defect in steel qualities // Tetsu-to-Hagane. – 1938. – Vol. 24, no. 11 – P. 1005–1013. – DOI: 10.2355/1915.24.11_1005.
  7. De Haas W. J., Hadfield R. On the Effect of the Temperature of Liquid Hydrogen (–252.8oC) on the Tensile Properties of Forty-One Specimens of Metals Comprising (a) pure iron 99.85%; (b) four carbon steels; (c) thirty alloy steels; (d) copper and nickel; (e) four non-ferrous alloys // Philosophical Transactions of the Royal Society of London. Series A. – 1934. – Vol. 232. – P. 297–332.
  8. Zapffe C. A., Sims C. E. Hydrogen embrittlement, internal stress and defects in steel // Trans. AIME. – 1941. – Vol. 145, no. 1941. – P. 225–271.
  9. Jordan L., Eckman J. R. Determination of Oxygen and Hydrogen in Metals by Fusion in Vacuum // Industrial & Engineering Chemistry. – 1926. – Vol. 18, no. 3. – P. 279–282. – DOI: 10.1021/ie50195a017.
  10. Apparatus for determining hydrogen in steel : pat. 2,387,878 U.S. / Brown W. D. – Publ. 30.10.1945.
  11. Scafe R. M. Determination of Hydrogen in Steel Sampling and Analysis by Vacuum Extraction // Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers. – 1945. – Vol. 162. – P. 375.
  12. Continuously-operating gas-analyzing apparatus : pat. 1,644,951 U.S. / Olof R. – Publ. 11.10.1927.
  13. Method of and means for analyzing gases by differential thermal conductivity measurements : pat. 2,042,646 U.S. / Willenborg W. J. – Publ. 2.07.1936.
  14. Stewart A. T., Squires G. L. Analysis of ortho-and para-hydrogen mixtures by the thermal conductivity method // Journal of Scientific Instruments. – 1955. – Vol. 32, no. 1. – P. 26.
  15. Hydrogen analyzer : pat. 2,671,337 U.S. / Hulsberg H. A. – Publ. 9.03.1954.
  16. Single cell thermal conductivity measurements : pat 2,255,551 U.S. / Willenborg W. J. – Publ. 9.09.1941.
  17. Nolan D., Pitrun M. Diffusible hydrogen testing in Australia // Welding in the World. – 2004. – Vol. 48, no. 1–2. – P. 14–20. – DOI: 10.1007/BF03266409.
  18. New Metrological Support for Measurements of the Concentration of Hydrogen in Solid Samples / L. A. Konopel’ko, A. M. Polyanskii, V. A. Polyanskii, Y. A. Yakovlev // Measurement Techniques. – 2018. – Vol. 60, no. 12. – P. 1222–1227. – DOI: 10.1007/s11018-018-1343-3.
  19. Methodology of Hydrogen Measurements in Coated Steels / A. W. Hassel, S. V. Merzlikin, A. Mingers, C. Georges, J. Flock, K. Bergers, F. Zwettler. – Luxembourg : Publications Office of the European Union, 2013 – 161 p. – ISBN 978-92-79-29712-0.
  20. Application of multichannel diffusion model to analysis of hydrogen measurements in solid / D. Yu. Andronov, D. G. Arseniev, A. M. Polyanskiy, V. A. Polyanskiy, Yu. A. Yakovlev // International Journal of Hydrogen Energy. – 2017. – Vol. 42, no. 1. – P. 699–710. – DOI: 10.1016/2016.10.126.
  21. Турбогенераторы: расчет и конструкция / В. В. Титов, Г. М. Хуторецкий, Г. А. Загородная, Г. П. Вартаньян, Д. И. Заславский, И. А. Смотров / под ред. Н. П. Иванова, Р. А. Лютера. – Л. : Энергия, 1967.
  22. Abarca A. N. High Precision Flow Compensated Thermal Conductivity Detector for Gas Sensing with Read-out Circuit : master thesis. – Delft, 2015 – 97 p.
  23. ГОСТ 21132.1–98. Межгосударственный стандарт. Алюминий и сплавы алюминиевые. Метод определения водорода в твердом металле вакуум-нагревом.
  24. Полянский А. М., Полянский В. А., Яковлев Ю. А. Исследование полноты дегазации образцов при анализе содержания водорода в алюминиевых сплавах // Металлург. – 2011. – № 4. – С. 87–92.
  25. Метрологическая база измерений концентрации водорода для дальнейшего развития технологий : доклады международной конференции «Материалы и технологии для Арктики» / Л. А. Конопелько, А. М. Полянский, В. А. Полянский, Ю. А. Яковлев. – Санкт-Петербург : НИЦ «Курчатовский институт», ЦНИИ КМ «Прометей», 2017. – C. 260–267. – ISBN 978-5-900791-36-4.
  26. Purcell J. E., Ettre L. S. Analysis of hydrogen with thermal conductivity detectors // Journal of Chromatographic Science. – 1965. – Vol. 3, no. 2. – P. 69–71. – DOI: 10.1093/3.2.69.Development of Thermal Conductivity Type Hydrogen Sensor / M. Watanabe, R. Inoue, D. Ichikawa, K. Furusaki // ECS Transactions. – 2010. – Vol. 28, no. 20. – P. 31–42. – DOI: 10.1149/1.3489930.
 
PDF        

 

импакт-фактор
РИНЦ 0.284

 

МРДМК 2019
МРДМК 2019

ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук
Главный редактор:  Э.C. Горкунов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2019, www.imach.uran.ru