Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2017 Выпуск 6

2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. L. Kazakov, L. F. Spevak, O. A. Nefedova

SIMULTENIOUS APPLICATION OF THE BOUNDARY ELEMENT METHOD AND THE POWER SERIES METHOD FOR SOLVING A TWO-DIMENSIONAL PROBLEM OF HEAT WAVE MOTION

The paper develops numerical solution methods for heat conduction boundary value problems for the case of the power dependence of the heat conductivity factor on temperature. Besides heat distribution in space, it describes filtration of a polytropic gas in a porous medium. A distinctive feature of this equation is the degeneration of its parabolic type when the required function becomes zero, whereupon the equation acquires some properties typical of first-order equations. Particularly, in some cases, it proves possible to substantiate theorems of the existence and uniqueness of heat-wave type solutions for it. A numerical method using the advantages of the power series method and the boundary element method is proposed for the solution of the boundary value problem with a specified heat wave front. Simultaneous application of the two methods allows the accuracy of the numerical solution to be increased. A program has been developed from the proposed method. Test examples are considered.

K.Program of UB RAS, project № 15-7-1-17 grant of the RFBR, project № 16-01-00608

Keywords: nonlinear heat conduction equation, power series, boundary element method, computational experiment

А. Л. Казаков, Л. Ф. Спевак, О. А. Нефедова

СОВМЕСТНОЕ ИСПОЛЬЗОВАНИЕ МЕТОДА СТЕПЕННЫХ РЯДОВ И МЕТОДА ГРАНИЧНЫХ ЭЛЕМЕНТОВ ДЛЯ РЕШЕНИЯ ДВУМЕРНОЙ ЗАДАЧИ О ДВИЖЕНИИ ФРОНТА ТЕПЛОВОЙ ВОЛНЫ

Работа посвящена разработке численных методов решения краевых задач для нелинейного уравнения теплопроводности в случае степенной зависимости коэффициента теплопроводности от температуры. Помимо распространения тепла в пространстве, это уравнение описывает также фильтрацию политропного газа в пористой среде. Особенностью рассматриваемого уравнения является вырождение его параболического типа в случае нулевого значения искомой функции, вследствие чего уравнение приобретает некоторые свойства, обычно характерных для уравнений первого порядка. В частности, для него в некоторых случаях удается обосновать теоремы существования и единственности решений типа тепловой волны. Для краевой задачи с заданным фронтом тепловой волны предложен метод решения, использующий преимущества ранее применявшихся метода степенных рядов и метода граничных элементов. Совместное применение двух методов позволило повысить точность численного решения. Предложенный метод реализован в виде программы для ЭВМ. Рассмотрены тестовые примеры.

Благодарности: Комплексная программа УрО РАН, проект № 15-7-1-17 РФФИ, проект № 16-01-00608

Ключевые слова: нелинейное уравнение теплопроводности, степенной ряд, метод граничных элементов, вычислительный эксперимент

PDF        

 

импакт-фактор

 

МРДМК 2018 title=
МРДМК 2018

ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук
Главный редактор:  Э.C. Горкунов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2018, www.imach.uran.ru