Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2017 Выпуск 4

2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. K. Belyaev, D. E. Mansyrev, V. A. Polyanskiy, A. M. Polyanskiy, D. A. Tretyakov, Yu. A. Yakovlev

BOUNDARY LAYER OF HYDROGEN CONCENTRATION UNDER PLASTIC DEFORMATION

A new model of instability of uniform plastic deformation with the formation of Lüders bands on the surface of a material being deformed is experimentally confirmed. It has been found that nonuniform plastic deformations correlate with hydrogen concentration during the testing of metal specimens in the atmosphere at room temperature. The presence of additional pores and microcracks formed as a result of plastic deformation is the cause of the correlation between plastic deformations and hydrogen concentrations in aluminum alloys. The effect of the boundary layer in the distribution of hydrogen concentrations has been detected. It reflects the fact that all changes associated with mechanical and thermo-mechanical loading are localized in a thin boundary layer at the surface of a metal specimen. The wave approach to the analysis of the continuum equations and the model of the boundary layer of a bicontinuous medium containing hydrogen are used to describe the observed phenomena. The constructed model makes it possible to describe the development of plastic deformation as a wave process in the boundary layer of a bicontinuous medium.

Keywords: plastic deformation, Lüders bands, dissolved hydrogen, boundary-layer model, wave approach

А. К. Беляев, Д. Э. Мансырев, В. А. Полянский, А. М. Полянский, Д. А. Третьяков, Ю. А. Яковлев

ПОГРАНИЧНЫЙ СЛОЙ КОНЦЕНТРАЦИИ ВОДОРОДА ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ

В статье проведено экспериментальное обоснование новой модели потери устойчивости равномерной пластической деформации, приводящей к появлению полос Людерса на поверхности деформируемого металла. Установлено, что при испытаниях металлических образцов в атмосфере при комнатной температуре неравномерные пластические деформации коррелированны с концентрацией водорода. В алюминиевых сплавах такая корреляция означает наличие дополнительных пор и микротрещин, возникших в результате пластической деформации. Обнаружен эффект пограничного слоя в распределении концентраций водорода, когда все изменения, связанные с механическим и термомеханическим нагружением, локализованы в тонком пограничном слое у поверхности металлической детали. Для описания обнаруженных явлений использована модель пограничного слоя двухконтинуальной сплошной среды, содержащей водород и волновой подход к анализу уравнений сплошной среды. Построенная модель позволяет описать развитие пластической деформации, как волновой процесс в пограничном слое двухконтинуальной сплошной среды.

Благодарности: Исследование выполнено при поддержке РФФИ, проекты No. 15-08-03112-a и 17-08-00783-a

Ключевые слова: пластическая деформация, полосы Людерса, растворенный водород, модель пограничного слоя, волновой подход

PDF        

 

импакт-фактор

 

МРДМК 2018 title=
МРДМК 2018

ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук
Главный редактор:  Э.C. Горкунов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2018, www.imach.uran.ru