Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2016 Выпуск 5

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. V. Makarov  N. A. Davydova  I. Y. Malygina  V. V. Lyzhin  L. G. Korshunov

IMPROVING THE THERMAL STABILITY AND HEAT WEAR RESISTANCE OF CARBURIZED CHROMIUM-NICKEL STEEL BY NANOSTRUCTURING FRICTIONAL TREATMENT

DOI: 10.17804/2410-9908.2016.5.049-066

Purpose. Carburized chromium-nickel steels are widely used in the manufacture of drilling tools, gears, shafts, bushings and other parts which may be subjected to thermal effects and significant heating by friction at high speeds of sliding during operation. The aim of the paper is studying the possibilities of increasing the resistance of carburized chromium-nickel steel to thermal softening and heat seizure in the case of high-speed sliding friction by frictional treatment with sliding indenters. Methods. Steel 20KhN3A (wt.%: 0.20 C, 0.68 Cr, 2.90 Ni, 0.14 Mo) is subjected to carburizing, three heat treatments (quenching from 810 °C in oil; quenching and deep-freeze treatment at −196 °C; quenching and tempering at 180 °C) and frictional treatment using Al2O3 or hard-alloy VK8 indenters. The structure and phase composition of the steel are studied by transmission electron microscopy and X-ray analysis. The effect of tempering temperature in a vacuum at 100 °C to 700 °C on the microhardness of the carburized steel surface and the tribological properties (wear rate and friction coefficient) during unlubricated friction on the steel disk with sliding speeds of 1.5 and 4.5 m/s is determined. Results: Friction treatment leads to the formation of a nanostructured surface layer and increases the hardness of the carburized surfaces from 7.3‒9.5 to 10.1‒11.6 GPa. The presence of metastable retained austenite (25‒30 vol.%) in low-tempered steel provides a significant increase in the depth of hardening during friction treatment as a result of the deformation decay of austenite and its transformation into high-strength strain-induced martensite. Nanostructuring frictional treatment improves the resistance to softening of carburized steel with different initial structures during heating to temperatures of 500‒600 °C. Frictional treatment of quenched and low-tempered carburized steel enhances the heat wear resistance in tests with sliding friction at high speeds (over 2 m/s), when there is an intense in frictional heat, leading to the thermal softening of the surface. Nanostructuring frictional treatment provides not only a significant increase in wear resistance, but also a decrease in the friction coefficient at sliding speeds of 2.3‒3.0 m/s.

Keywords: steel, carburization, quenching, deep-freeze treatment, tempering, frictional treatment, nanocrystalline structure, thermal stability, sliding friction, tribological properties

Bibliography:

  1. Sagaradze V.S. Povyshenie nadezhnosti tsementuemykh detalei [Increasing the Reliability of Carburized Parts]. Moscow, Mashinostroenie Publ., 1975, 216 p. (In Russian).
  2. Vinogradov V.N., Sorokin G.M., Pashkov A.N., Rubarkh V.M. Dolgovechnost burovykh dolot [Durability of Drill Bits]. Moscow, Nedra Publ., 1977, 256 p. (In Russian).
  3. Makarov A.V., Korshunov L.G., Malygina I.Yu., Osintseva A.L. Effect of laser quenching and subsequent heat treatment on the structure and wear resistance of a cemented steel 20KhN3A. Physics of Metals and Metallography, 2007, vol. 103, no. 5, pp. 507–518. DOI: 10.1134/S0031918X07050110.
  4. Lu K., Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Materials Science and Engineering A, 2004, vol. 375–377, pp. 38–45. DOI: 10.1016/j.msea.2003.10.261.
  5. Sun Y., Bailey R. Improvement in tribocorrosion behavior of 304 stainless steel by surface mechanical attrition treatment. Surface and Coatings Technology, 2014, vol. 253, pp. 284–291. DOI: 10.1016/j.surfcoat.2014.05.057.
  6. Chang S., Pyun Y., Amanov A. Wear and chattering characteristics of rail materials by ultrasonic nanocrystal surface modification. International Journal of Precision Engineering and Manufacturing, 2015, vol. 16, no. 11, pp. 2403–2410. DOI: 10.1007/s12541-015-0310-z.
  7. Mitrovic S., Adamovic D., Zivic F., Dzunic D., Pantic M. Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Applied Surface Science, 2014, vol. 290, pp. 223–232. DOI: 10.1016/j.apsusc.2013.11.050.
  8. Li G., Chen J., Guan D. Friction and wear behaviors of nanocrystalline surface layer of medium carbon steel. Tribology International, 2010, vol. 43, pp. 2216–2221. DOI: 10.1016/j.triboint.2010.07.004.
  9. Ba D.M., Ma S.N., Meng F.J., Li C.Q. Friction and wear behaviors of nanocrystalline surface layer of chrome-silicon alloy steel. Surface and Coatings Technology, 2007, vol. 202, рp. 254–260. DOI: 10.1016/j.surfcoat.2007.05.033.
  10. Peng R., Fu L., Zhou L. Improved wear resistance by phase transformation of surface nanocrystalline 1090 steel prepared by sandblasting technique. Applied Surface Science, 2016, vol. 388, pp. 406–411. DOI: 10.1016/j.apsusc.2015.12.103.
  11. Makarov A.V., Korshunov L.G., Osintseva A.L. A method for processing steel parts, 2002, RF Patent 2194773. (In Russian).
  12. Makarov A.V., Skorynina P.A., Osintseva A.L., Yurovskikh A.S., Savrai R.A. Improving the tribological properties of the 12Kh18N10T austenitic steel by nanostructuring frictional treatment. Obrabotka metallov. Tekhnologiya, oborudovanie, instrumenty, 2015, no. 4 (69), pp. 80–92. (In Russian).
  13. Makarov A.V., Pozdeeva N.A., Savrai R.A., Yurovskikh A.S., MalyginaI.Yu. Improvement of wear resistance of hardened structural steel by nanostructuring frictional treatment. Journal of Friction and Wear, 2012, vol. 33, iss. 6, pp. 433–442. DOI: 10.3103/S1068366612060050.
  14. Makarov A.V., Korshunov L.G., Vykhodets V.B., Kurennykh T.E., Savrai R.A. Effect of strengthening friction treatment on the chemical composition, structure, and tribological properties of a high-carbon steel. Physics of Metals and Metallography, 2010, vol. 110, iss. 5, pp. 507–521. DOI: 10.1134/S0031918X10110116.
  15. Makarov A.V., Savrai R.A., Gorkunov E.S., Yurovskikh A.S., Malygina I.Yu., Davydova N.A. Structure, mechanical characteristics, and deformation and fractures of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment. Physical mesomechanics, 2015, vol. 18, no. 1, pp. 43–57. DOI: 10.1134/S1029959915010063.
  16. Zammit A., Abela S., Wagner L., Mhaede M., Grech M. Tribological behaviour of shot peened Cu–Ni austempered ductile iron. Wear, 2013, vol. 302, pp. 829–836. DOI: 10.1016/j.wear.2012.12.027.
  17. Sun Y. Sliding wear behavior of surface mechanical attrition treated AISI 304 stainless steel. Tribology International, 2013, vol. 57, pp. 67–75. DOI: 10.1016/j.triboint.2012.07.015.
  18. Zhou L., Liu G., Han Z., Lu K. Grain size effect on wear resistance of a nanostructured AISI52100 steel. Scripta Materialia, 2008, vol. 58, рp. 445–448. DOI: 10.1016/j.scriptamat.2007.10.034.
  19. Lv X.R., Wang S.G., Liu Y., Long K., Li S., Zhang. Z.D. Effect of nanocrystallization on tribological behaviors of ingot iron. Wear, 2008, vol. 264, рp. 535–541. DOI: 10.1016/j.wear.2007.04.010.
  20. Yan W., Fang L., Sun K., Xu Y. Effect of surface work hardening on wear behavior of Hadfield steel. Materials Science and Engineering: A, 2007, vol. 460–461, рp. 542–549. DOI: 10.1016/j.msea.2007.02.094.
  21. Makarov A.V., Korshunov L.G., Malygina I.Yu., Solodova I.L. Raising the heat and wear resistances of hardened carbon steels by friction strengthening treatment. Metal Science and Heat Treatment, 2007, vol. 49, no. 3–4, pp. 150–156. DOI: 10.1007/s11041-007-0028-3.
  22. Makarov A.V., Korshunov L.G., Solodova I.L., Malygina I.Yu. Thermal stability and tribological properties of quenched carbon steels hardened by means of surface plastic deformation under conditions of sliding friction. Deformatsiya i razrushenie materialov, 2006, no. 4, pp. 26–33. (In Russian).
  23. Kuznetsov V.P., Makarov A.V., Pozdeeva N.A., Savrai R.A., Yurovskikh A.S., Malygina I.Yu., Kiryakov A.E. Increasing the strength, heat resistance and wear resistance of case-hardened 20Cr steel parts by nanostructuring friction burnishing in turning and milling centers. Uprochnyayushchie tekhnologii i pokrytiya, 2011, no. 9, pp. 3–13. (In Russian).
  24. Kuznetsov V.P., Makarov A.V., Psakhie S.G., Savrai R.A., Malygina I.Yu., Davydova N.A. Tribological aspects in nanostructuring burnishing of structural steels. Physical mesomechanics, 2014, vol. 17, no. 4, pp. 250–264. DOI: 10.1134/S102995991404002X.
  25. Valiev R.Z., Aleksandrov I.V. Obyemnye nanostrukturnye metallicheskie materialy [Bulk Nanostructured Metal Materials]. Moscow, Akademkniga Publ., 2007, 398 p. ISBN 978-5-94628-217-8. (In Russian).
  26. Stolbovsky A.V., Popov V.V., Popova E.N. Structure and thermal stability of tin bronze nanostructured by high pressure torsion. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 118–132. DOI: 10.17804/2410-9908.2015.5.118-132. Available at: http://dream-journal.org/DREAM_Issue_5_2015_Stolbovsky_A.V._et_al._118_132.pdf
  27. Shirinkina I.G., Brodova I.G., Astafiev V.V. Thermal stability of the ultrafine amts aluminum alloy after high strain-rate deformation. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 72–79. DOI: 10.17804/2410-9908.2015.5.072-079. Available at: http://dream-journal.org/DREAM_Issue_5_2015_Shirinkina_I.G._et_al._072_079.pdf
  28. Liu W.B., Zhang C., Xia Z.X., Yang Z.G., Wang P.H., Chen J.M. Strain-induced refinement and thermal stability of a nanocrystalline steel produced by surface mechanical attrition treatment. Materials Science and Engineering A, 2013, vol. 568, pp. 176–183. DOI: 10.1016/j.msea.2012.12.090.
  29. Liu W., Zhang C., Yang Z., Xia Z. Microstructure and thermal stability of bulk nanocrystalline alloys produced by surface mechanical attrition treatment. Applied Surface Science, 2014, vol. 292, pp. 556–562. DOI: 10.1016/j.apsusc.2013.12.008.
  30. Makarov A.V., Pozdeeva N.A., Malygina I.Yu. Increasing the microhardness and heat resistance of low-carbon ferrous alloys by surface nanostructuring with friction treatment. Deformatsiya i razrushenie materialov, 2010, no. 5, pp. 32–38. (In Russian).
  31. Makarov A.V., Korshunov L.G., Savrai R.A., Davydova N.A., Malygina I.Yu., Chernenko N.L. Influence of prolonged heating on thermal softening, chemical composition, and evolution of the nanocrystalline structure formed in quenched high-carbon steel upon friction treatment. Physics of Metals and Metallography, 2014, vol. 115, no. 3, pp. 303–314. DOI: 10.1134/S0031918X14030065.
  32. Makarov A.V., Kogan L.Kh., Gorkunov E.S., Kolobylin Yu.M. Eddy-current evaluation of wear resistance of case-hardened chromium-nickel 20KhN3A steel. Russian Journal of Nondestructive Testing, 2001, vol. 37, no. 2, pp. 136–144. DOI: 10.1023/A:1016775923534.
  33. Korshunov L.G., Makarov A.V., Schastlivtsev V.M., Yakovleva I.L., Osintseva A.L. Structure and wear-resistance of steel U8 after laser treatment. Physics of Metals and Metallography, 1988, vol. 66, no. 5, pp. 106–115.
  34. Makarov A.V., Korshunov L.G., Schastlivtsev V.M., Solodova I.L., Yakovleva I.L. Structure and abrasive wear resistance of quenched and tempered hypereutectoid carbon steels. Physics of Metals and Metallography, 2004, vol. 98, no. 4, pp. 428–443.
  35. Gavrilyuk V.G. Raspredelenie ugleroda v stali [Distribution of Carbon in Steel]. Kiev, Naukova Dumka Publ., 1987, 208 p. (In Russian).
  36. Gromov V.E., Morozov K.V., Ivanov Yu.F., Aksenova K.V., Peregudov O.A., Semin A.P. Formation and evolution of structure-phase states in rails after drawn resource. Diagnostics, Resource and Mechanics of materials and structures, 2016, iss. 1, pp. 38–44. DOI: 10.17804/2410-9908.2016.1.038-04437. Available at: http://dream-journal.org/DREAM_Issue_1_2016_Gromov_V.E._et_al._038_044.pdf
  37. Makarov A.V., Savrai R.A., Pozdeeva N.A., Smirnov S.V., Vichuzhanin D.I., Korshunov L.G., Malygina I.Yu. Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension. Surface and Coatings Technology, 2010, vol. 205, iss. 3, pp. 841–852. DOI: 10.1016/j.surfcoat.2010.08.025.
  38. Vychuzhanin D.I., Makarov A.V., Smirnov S.V., Pozdeeva N.A., Malygina I.Yu. Stress and Strain and Damage during Frictional Strengthening Treatment of Flat Steel Surface with a Sliding Cylindrical Indenter. Journal of Machinery Manufacture and Reliability, 2011, vol. 40, no. 6, pp. 554–560. DOI: 10.3103/S1052618811050190.
  39. Kuznetsov V.P., Smolin I.Yu., Dmitriev A.I., Konovalov D.A., Makarov A.V., Kiryakov A.E., Yurovskikh A.S. Finite element simulation of nanostructuring burnishing. Physical Mesomechanics, 2013, vol. 16, no. 1, pp. 62–72. DOI: 10.1134/S1029959913010074.
  40. Makarov A.V., Gorkunov E.S., Kogan L.Kh., Malygina I.Yu. Estimation of the quality of strengthening frictional treatment and subsequent tempering of eutectoid steel by the eddy-current method. Russian Journal of Nondestructive Testing, 2009, vol. 45, no. 2, pp. 133–142. DOI: 10.1134/S1061830909020089.
  41. Golego N.L. Skhvatyvanie v mashinakh i metody ego ustraneniya [Seizure in Machines and Methods for its Elimination]. Kiev, Tekhnika Publ., 1966, 231p. (In Russian).

А. В. Макаров, Н. А. Давыдова, И. Ю. Малыгина, В. В. Лыжин, Л. Г. Коршунов

ПОВЫШЕНИЕ ТЕПЛОСТОЙКОСТИ И СОПРОТИВЛЕНИЯ ТЕПЛОВОМУ ИЗНАШИВАНИЮ ЦЕМЕНТИРОВАННОЙ ХРОМОНИКЕЛЕВОЙ СТАЛИ НАНОСТРУКТУРИРУЮЩЕЙ ФРИКЦИОННОЙ ОБРАБОТКОЙ

Цементуемые хромоникелевые стали широко используются при производстве бурового инструмента, шестерен, валов и других деталей, которые при эксплуатации могут подвергаться значительному фрикционному нагреву. В работе изучены возможности повышения сопротивления термическому разупрочнению и тепловому схватыванию при трении скольжения хромоникелевой цементированной стали 20ХН3А (мас. %: 0,20 С; 0,68 Cr; 2,9 Ni; 0,14 Mo) за счет проведения фрикционной обработки скользящими инденторами из Al2O3 и твердого сплава ВК8. Определяли влияние температуры отпуска в вакууме при 100-700 °С на микротвердость цементированной поверхности стали и трибологические свойства (интенсивность изнашивания и коэффициент трения) при трении без смазки по стальному диску со скоростями скольжения 1,5-4,5 м/с. Установлено, что фрикционная обработка приводит к формированию на цементированной поверхности наноструктурированного упрочненного до 10,1-11,6 ГПа поверхностного слоя. Продемонстрирована роль метастабильного остаточного аустенита, присутствующего в количестве 25-30 об. % в низкоотпущенной стали, в увеличении глубины упрочнения цементированного слоя при фрикционной обработке. У цементированной стали с различными исходными структурами после фрикционной обработки выявлено повышенное сопротивление разупрочнению при нагреве. В результате наноструктурирующей фрикционной обработки закаленной и низкоотпущенной цементированной стали установлено повышение сопротивления тепловому изнашиванию и снижение коэффициента трения при трении скольжения со скоростями более 2 м/с, обуславливающими значительный фрикционный нагрев поверхности.

Ключевые слова: сталь, цементация, закалка, обработка холодом, отпуск, фрикционная обработка, нанокристаллическая структура, теплостойкость, трение скольжения, трибологические свойства

Библиография:

  1. Сагарадзе В. С. Повышение надежности цементуемых деталей. – М. : Машиностроение, 1975. – 216 с.
  2. Долговечность буровых долот / В. Н. Виноградов, Г. М. Сорокин, А. Н. Пашков, В. М. Рубарх. – М. : Недра, 1977. – 256 с.
  3. Effect of laser quenching and subsequent heat treatment on the structure and wear resistance of a cemented steel 20KhN3A / A. V. Makarov, L. G. Korshunov, I. Yu. Malygina, A. L. Osintseva // Physics of Metals and Metallography. – 2007. – Vol. 103, no. 5. – P. 507–518. – DOI: 10.1134/S0031918X07050110.
  4. Lu K., Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment // Materials Science and Engineering A. – 2004. – Vol. 375–377. – P. 38–45. – DOI: 10.1016/j.msea.2003.10.261.
  5. Sun Y., Bailey R. Improvement in tribocorrosion behavior of 304 stainless steel by surface mechanical attrition treatment // Surface and Coatings Technology. – 2014. – Vol. 253. – P. 284–291. – DOI: 10.1016/j.surfcoat.2014.05.057.
  6. Chang S., Pyun Y., Amanov A. Wear and chattering characteristics of rail materials by ultrasonic nanocrystal surface modification // International Journal of Precision Engineering and Manufacturing. – 2015. – Vol. 16, no. 11. – P. 2403–2410. – DOI: 10.1007/s12541-015-0310-z.
  7. Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions / S. Mitrovic, D. Adamovic, F. Zivic, D. Dzunic, M. Pantic // Applied Surface Science. – 2014. – Vol. 290. – P. 223–232. – DOI: 10.1016/j.apsusc.2013.11.050.
  8. Li G., Chen J., Guan D. Friction and wear behaviors of nanocrystalline surface layer of medium carbon steel // Tribology International. – 2010. – Vol. 43. – P. 2216–2221. – DOI: 10.1016/j.triboint.2010.07.004.
  9. Friction and wear behaviors of nanocrystalline surface layer of chrome-silicon alloy steel / D. M. Ba, S. N. Ma, F. J. Meng, C. Q. Li // Surface and Coatings Technology. – 2007. – Vol. 202. – P. 254–260. – DOI: 10.1016/j.surfcoat.2007.05.033.
  10. Peng R., Fu L., Zhou L. Improved wear resistance by phase transformation of surface nanocrystalline 1090 steel prepared by sandblasting technique // Applied Surface Science. – 2016. – Vol. 388. – P. 406–411. – DOI: 10.1016/j.apsusc.2015.12.103.
  11. Способ обработки стальных изделий : пат. 2194773 Рос. Федерация / Макаров А. В., Коршунов Л. Г., Осинцева А. Л. – 2000120723/02 ; заявл. 01.08.2000 ; опубл. 20.12.2002, Бюл. № 35.
  12. Повышение трибологических свойств аустенитной стали 12Х18Н10Т наноструктурирующей фрикционной обработкой / А. В. Макаров, П. А. Скорынина, А. Л. Осинцева, А. С. Юровских, Р. А. Саврай // Обработка металлов. Технология, оборудование, инструменты. – 2015. – № 4 (69). – С. 80–92.
  13. Improvement of wear resistance of hardened structural steel by nanostructuring frictional treatment / A. V. Makarov, N. A. Pozdeeva, R. A. Savrai, A. S. Yurovskikh, I. Yu. Malygina. – Journal of Friction and Wear. – 2012. – Vol. 33, iss. 6. – P. 433–442. – DOI: 10.3103/S1068366612060050.
  14. Effect of strengthening friction treatment on the chemical composition, structure, and tribological properties of a high-carbon steel / A. V. Makarov, L. G. Korshunov, V. B. Vykhodets, T. E. Kurennykh, R. A. Savrai // Physics of Metals and Metallography. – 2010. – Vol. 110, iss. 5. – P. 507–521. – DOI: 10.1134/S0031918X10110116.
  15. Structure, mechanical characteristics, and deformation and fractures of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment / A. V. Makarov, R. A. Savrai, E. S. Gorkunov, A. S. Yurovskikh, I. Yu. Malygina, N. A. Davydova // Physical Mesomechanics. – 2015. – Vol. 18, no. 1. – P. 43–57. – DOI: 10.1134/S1029959915010063.
  16. Tribological behavior of shot peened Cu–Ni austempered ductile iron / A. Zammit, S. Abela, L. Wagner, M. Mhaede, M. Grech // Wear. – 2013. – Vol. 302. – P. 829–836. – DOI: 10.1016/j.wear.2012.12.027.
  17. Sun Y. Sliding wear behavior of surface mechanical attrition treated AISI 304 stainless steel // Tribology International. – 2013. – Vol. 57. – P. 67–75. – DOI: 10.1016/j.triboint.2012.07.015.
  18. Grain size effect on wear resistance of a nanostructured AISI52100 steel / L. Zhou, G. Liu, Z. Han, K. Lu // Scripta Materialia. – 2008. – Vol. 58. – P. 445–448. – DOI: 10.1016/j.scriptamat.2007.10.034.
  19. Effect of nanocrystallization on tribological behaviors of ingot iron / X. R. Lv, S. G. Wang, Y. Liu, K. Long, S. Li, Z. D. Zhang // Wear. – 2008. – Vol. 264, iss. 7–8. – P. 535–541. – DOI: 10.1016/j.wear.2007.04.010.
  20. Effect of surface work hardening on wear behavior of Hadfield steel / W. Yan, L. Fang, K. Sun, Y. Xu // Materials Science and Engineering: A. – 2007. – Vol. 460–461. – P. 542–549. – DOI: 10.1016/j.msea.2007.02.094.
  21. Raising the heat and wear resistances of hardened carbon steels by friction strengthening treatment / A. V. Makarov, L. G. Korshunov, I. Yu. Malygina, I. L. Solodova // Metal Science and Heat Treatment. – 2007. – Vol. 49, no. 3–4. – P. 150–156. – DOI: 10.1007/s11041-007-0028-3.
  22. Твердость, теплостойкость и трибологические свойства закаленных углеродистых сталей, упрочненных в условиях трения скольжения / А. В. Макаров, Л. Г. Коршунов, И. Л. Солодова, И. Ю. Малыгина // Деформация и разрушение материалов. – 2006. – № 4. – С. 26–33.
  23. Повышение прочности, теплостойкости и износостойкости деталей из цементированной стали 20Х наноструктурирующим фрикционным выглаживанием на токарно-фрезерных центрах / В. П. Кузнецов, А. В. Макаров, Н. А. Поздеева, Р. А. Саврай, А. С. Юровских, И. Ю. Малыгина, А. Е. Киряков // Упрочняющие технологии и покрытия. – 2011. – № 9. – С. 3–13.
  24. Tribological aspects in nanostructuring burnishing of structural steels / V. P. Kuznetsov, A. V. Makarov, S. G. Psakhie, R. A. Savrai, I. Yu. Malygina, N. A. Davydova // Physical Mesomechanics. – 2014. – Vol. 17, no. 4. – P. 250–264. – DOI: 10.1134/S102995991404002X.
  25. Валиев Р. З., Александров И. В. Объемные наноструктурные металлические материалы. – М. : Академкнига, 2007. – 398 с.
  26. Stolbovsky A. V. , Popov V. V., Popova E. N. Structure and thermal stability of tin bronze nanostructured by high pressure torsion // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 5. – P. 118–132. – DOI: 10.17804/2410-9908.2015.5.118-132. – URL: http://dream-journal.org/DREAM_Issue_5_2015_Stolbovsky_A.V._et_al._118_132.pdf.
  27. Shirinkina I. G., Brodova I. G., Astafiev V. V. Thermal stability of the ultrafine amts aluminum alloy after high strain-rate deformation // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 5. – P. 72–79. – DOI: 10.17804/2410-9908.2015.5.072-079. – URL: http://dream-journal.org/DREAM_Issue_5_2015_Shirinkina_I.G._et_al._072_079.pdf.
  28. Strain-induced refinement and thermal stability of a nanocrystalline steel produced by surface mechanical attrition treatment / W. B. Liu, C. Zhang, Z. X. Xia, Z. G. Yang, P. H. Wang, J. M. Chen // Materials Science and Engineering: A. – 2013. – Vol. 568. – P. 176–183. – DOI: 10.1016/j.msea.2012.12.090.
  29. Microstructure and thermal stability of bulk nanocrystalline alloys produced by surface mechanical attrition treatment / W. Liu, C. Zhang, Z. Yang, Z. Xia // Applied Surface Science. – 2014. – Vol. 292. – P. 556–562. – DOI: 10.1016/j.apsusc.2013.12.008.
  30. Макаров А. В., Поздеева Н. А., Малыгина И. Ю. Повышение микротвердости и теплостойкости низкоуглеродистых сплавов железа при наноструктурировании поверхности фрикционной обработкой // Деформация и разрушение материалов. – 2010. – № 5. – С. 32–38.
  31. Influence of prolonged heating on thermal softening, chemical composition, and evolution of the nanocrystalline structure formed in quenched high-carbon steel upon friction treatment / A. V. Makarov, L. G. Korshunov, R. A. Savrai, N. A. Davydova, I. Yu. Malygina, N. L. Chernenko // Physics of Metals and Metallography. – 2014. – Vol. 115, no. 3. – P. 303–314. – DOI: 10.1134/S0031918X14030065.
  32. Eddy-current evaluation of wear resistance of case-hardened chromium-nickel 20KhN3A steel / A. V. Makarov, L. Kh. Kogan, E. S. Gorkunov, Yu. M. Kolobylin // Russian Journal of Nondestructive Testing. – 2001. – Vol. 37, no. 2. – P. 136–144. – DOI: 10.1023/A:1016775923534.
  33. Structure and wear-resistance of steel U8 after laser treatment / L. G. Korshunov, A. V. Makarov, V. M. Schastlivtsev, I. L. Yakovleva, A. L. Osintseva // Physics of Metals and Metallography. – 1988. – Vol. 66, no. 5. – P. 106–115.
  34. Structure and abrasive wear resistance of quenched and tempered hypereutectoid carbon steels / A. V. Makarov, L. G. Korshunov, V. M. Schastlivtsev, I. L. Solodova, I. L. Yakovleva // Physics of Metals and Metallography. – 2004. – Vol. 98, no. 4. – P. 428–443.
  35. Гаврилюк В. Г. Распределение углерода в стали. – Киев : Наукова думка, 1987. – 208 с.
  36. Formation and evolution of structure-phase states in rails after drawn resource / V. E. Gromov, K. V. Morozov, Yu. F. Ivanov, K. V. Aksenova, O. A. Peregudov, A. P. Semin // Diagnostics, Resource and Mechanics of materials and structures. – 2016. – Iss. 1. – P. 38–44. – DOI: 10.17804/2410-9908.2016.1.038-044. – URL: http://dream-journal.org/DREAM_Issue_1_2016_Gromov_V.E._et_al._038_044.pdf.
  37. Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension / A. V. Makarov, R. A. Savrai, N. A. Pozdeeva, S. V. Smirnov, D. I. Vichuzhanin, L. G. Korshunov, I. Yu. Malygina // Surface and Coatings Technology. – 2010. – Vol. 205, iss. 3. – P. 841–852. – DOI: 10.1016/j.surfcoat.2010.08.025.
  38. Stress and Strain and Damage during Frictional Strengthening Treatment of Flat Steel Surface with a Sliding Cylindrical Indenter / D. I. Vychuzhanin, A. V. Makarov, S. V. Smirnov, N. A. Pozdeeva, I. Yu. Malygina // Journal of Machinery Manufacture and Reliability. – 2011. – Vol. 40, no. 6. – P. 554–560. – DOI: 10.3103/S1052618811050190.
  39. Finite element simulation of nanostructuring burnishing / V. P. Kuznetsov, I. Yu. Smolin, A. I. Dmitriev, D. A. Konovalov, A. V. Makarov, A. E. Kiryakov, A. S. Yurovskikh // Physical Mesomechanics. – 2013. – Vol. 16, no. 1. – P. 62–72. – DOI: 10.1134/S1029959913010074.
  40. Estimation of the quality of strengthening frictional treatment and subsequent tempering of eutectoid steel by the eddy-current method / A. V. Makarov, E. S. Gorkunov, L. Kh. Kogan, I. Yu. Malygina // Russian Journal of Nondestructive Testing. – 2009. – Vol. 45, no. 2. – P. 133–142. – DOI: 10.1134/S1061830909020089.
  41. Голего Н. Л. Схватывание в машинах и методы его устранения. – Киев : Техника, 1966. – 231 с.

PDF      

Библиографическая ссылка на статью

Korshunov A. V. Makarov  N. A. Davydova  I. Y. Malygina  V. V. Lyzhin  L. G. Improving the Thermal Stability and Heat Wear Resistance of Carburized Chromium-Nickel Steel by Nanostructuring Frictional Treatment // Diagnostics, Resource and Mechanics of materials and structures. - 2016. - Iss. 5. - P. 49-66. -
DOI: 10.17804/2410-9908.2016.5.049-066. -
URL: http://dream-journal.org/issues/2016-5/2016-5_99.html
(accessed: 28.03.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru