Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2015 Выпуск 5

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. V. Stolbovsky, V. V. Popov, E. N. Popova

STRUCTURE AND THERMAL STABILITY OF TIN BRONZE NANOSTRUCTURED BY HIGH PRESSURE TORSION

DOI: 10.17804/2410-9908.2015.5.118-132

The evolution of the structure of bronze containing 7.4 wt. % Sn under severe plastic deformation by high pressure torsion has been studied by transmission electron microscopy and microhardness measurements. The thermal stability of the structures obtained has been investigated in subsequent annealing. It is demonstrated that the presence of an enhanced amount of impurities considerably retards the relaxation processes. It is shown that, along with an enhanced thermal stability of the nanostructures obtained, the transition from the overall growth of crystallite sizes at heating to the dramatic development of recrystallization processes in the alloy under study is much smoother than in pure metals.

Keywords: nanostructuring, nanostructures, severe plastic deformation, high-pressure torsion, grain boundaries, thermal stability, tin bronze

Bibliography:

  1. Valiev R.Z. Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Materials, 2004, vol. 3, pp. 511–516. DOI: 10.1038/nmat1180.
  2. Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zehetbauer M. J., Zhu Y. T. Producing bulk ultrafine-grained materials by severe plastic deformation. The Journal of the Minerals, Metals & Materials Society, 2006, vol. 58, iss. 4, pp. 33–39. DOI: 10.1007/s11837-006-0213-7.
  3. Valiev R.Z., Aleksandrov I.V. Obyomnye nanostrukturnye metallicheskie materialy [Bulk Nanostructured Metal Materials]. M., Akademkniga Publ., 2007, 398 p. ISBN 978-5-94628-217-8. (In Russian).
  4. Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 2013, vol. 61, iss. 3, pp. 782–817. DOI:10.1016/j.actamat.2012.10.038.
  5. Pippan R., Scheriau S., Hohenwarte A., Hafok M. Advantages and limitations of HPT: A review. Materials Science Forum, 2008, vol. 584–586, pp. 16–21. DOI: 10.4028/www.scientific.net/MSF.584-586.16.
  6. Vorhauer A., Pippan R. Microstructure and thermal stability of tungsten based materials processed by means of Severe Plastic Deformation. Materials Science Forum, 2003, vol. 426–432, pp. 2747–2752. DOI:10.4028/www.scientific.net/MSF.426-432.2747.
  7. Sabirov I., Pippan R. Characterization of tungsten fragmentation in a W–25 % Cu composite after high-pressure torsion. Materials Characterization, 2007, vol. 58, iss. 10, pp. 848–853. DOI: 10.1016/j.matchar.2006.08.001.
  8. Popov V.V., Valiev R.Z., Popova E.N., Sergeev A.V., Stolbovsky A.V., Kazihanov V.U. Structure and properties of grain boundaries in submicrocrystalline W obtained by severe plastic deformation. Defect and Diffusion Forum, 2009, vol. 283–286, p. 629–638. DOI: 10.4028/www.scientific.net/DDF.283-286.629.
  9. Popov V.V., Grabovetskaya G.P., Sergeev A.V., Mishin I.P., Timofeev A.N., Kovalenko E.V. Structure and properties of grain boundaries in submicrocrystalline molybdenum prepared by high-pressure torsion. The Physics of Metals and Metallography, 2010, vol. 109, iss. 5, pp. 556–562. DOI: 10.1134/S0031918X10050169.
  10. Popova E.N., Popov V.V., Romanov E.P., Pilyugin V.P. Thermal stability of nanocrystalline Nb produced by severe plastic deformation. The Physics of Metals and Metallography, 2006, vol. 101, iss. 1, pp. 52–67. DOI: 10.1134/S0031918X06010078.
  11. Popova E.N., Popov V.V., Romanov E.P., Pilyugin V.P. Effect of the degree of deformation on the structure and thermal stability of nanocrystalline niobium produced by high-pressure torsion. The Physics of Metals and Metallography, 2007, vol. 103, iss. 4, pp 407–413. DOI: 10.1134/S0031918X0704014X.
  12. Popov V.V., Popova E.N., Stolbovskiy A.V. Nanostructuring Nb by various techniques of severe plastic deformation. Materials Science and Engineering: A, 2012, vol. 539, pp. 22–29. DOI: 10.1016/j.msea.2011.12.082.
  13. Schafler E., Pippan R. Effect of thermal treatment on microstructure in high pressure torsion (HPT) deformed nickel. Materials Science and Engineering: A, 2004, vol. 387–389, pp. 799–804. DOI: 10.1016/j.msea.2004.01.112.
  14. Zhang H.W., Huang X., Pippan R., Hansen N. Thermal behavior of Ni (99.967 % and 99.5 % purity) deformed to an ultra-high strain by high pressure torsion. Acta Materialia, 2010, vol. 58, iss. 5, pp. 1698–1707. DOI: 10.1016/j.actamat.2009.11.012.
  15. Pilyugin V.P., Gapontseva T.M., Chashchukhina T.I., Voronova L.M., Shchinova L.I., Degtyarev M.V. Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure. The Physics of Metals and Metallography, 2008, vol. 105, iss. 4, pp. 409–419. DOI: 10.1134/S0031918X08040157.
  16. Popov V.V., Popova E.N., Stolbovskii A.V., Pilyugin V.P., Arkhipova N.K. Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure ob[1]tained. The Physics of Metals and Metallography, 2012, vol. 113, iss. 3, pp. 295–301. DOI: 10.1134/S0031918X1203009X.
  17. Popov V.V., Popova E.N., Stolbovskiy A.V., Pilyugin V.P. Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures. Materials Science and Engineering: A, vol. 528, iss. 3, pp. 1491–1496. DOI: 10.1016/j.msea.2010.10.052.
  18. Rathmayr G.B., Pippan R. Influence of impurities and deformation temperature on the saturation microstructure and ductility of HPT-deformed nickel. Acta Materialia, 2011, vol. 59, iss. 19, pp. 7228–7240. DOI: 10.1016/j.actamat.2011.08.023.
  19. Popov V.V., Popova E.N., Kuznetsov D.D., Stolbovskii A.V., Pilyugin V.P. Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen. The Physics of Metals and Metallography, 2014, vol. 115, iss. 7, pp. 682–691. DOI: 10.1134/S0031918X14070060.
  20. Popov V.V., Stolbovsky A.V., Popova E.N., Pilyugin V.P. Structure and thermal stability of Cu after severe plastic deformation. Defect and Diffusion Forum, 2010, vol. 297–301, pp. 1312–1321. DOI:10.4028/www.scientific.net/DDF.
  21. Stolbovsky A.V., Popov V.V., Popova E. N., Pilyugin V.P. Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures. Bulletin of the Russian Academy of Sciences: Physics, 2014, vol. 78, iss. 9, pp. 908–916. DOI: 10.3103/S1062873814090299.
  22. Oh-ishi K., Horita Z., Smitz D.J., Valiev R.Z., Nemoto M., Langdon. T.G. Fabrication and thermal stability of a nanocrystalline Ni-Al-Cr alloy: comparison with pure Cu and Ni. Journal of Materials Research, 1999, vol. 14, iss. 11, pp. 4200–4207.
  23. Pippan R., Scheriau S., Taylor A., Hafok M., Hohenwarter A., Bachmaier A. Saturation of fragmentation during severe plastic deformation. Annual Review of Materials Research, 2010, vol. 40, pp. 319–343. DOI: 10.1146/annurev-matsci-070909-104445.
  24. Konkova T.N., Mironov S.Y., Korznikov A.V. Abnormal grain growth in cryogenically deformed copper. Fizicheskaya mezomekhanika, 2011, vol. 14, no. 4, pp. 29–38. (In Rusian).
  25. Konkova T.N., Mironov S.Y., Korznikov A.V. Room-temperature instability of the structure of copper deformed at a cryogenic temperature. Russian metallurgy (Metally), 2011, vol. 2011, iss. 7, pp. 689–698. DOI: 10.1134/S0036029511070081.
  26. Popova E.N., Romanov E.P., Sudareva S.V. A15 superconducting composites and high[1]strength Cu-Nb conductors. The Physics of Metals and Metallography, 2003, vol. 96, iss. 2, pp. 146–159.
  27. Popova E.N., Rodionova L.A., Sudareva S.V., Romanov E.P., Khlebova N.E., Chukin A.M. Influence of Different Deformation Techniques on the Structure of Bronze Matrix in Multifilamentary Nb3Sn Composites. The Physics of Metals and Metallography, 1993, vol. 76, iss. 2, pp. 228–234.
  28. Zhilyaev A.P., Lee S., Nurislamova G.V., Valiev R.Z., Langton T.G.. Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scripta Materialia, 2001, vol. 44, iss. 12, pp. 2753–2758. DOI: 10.1016/S1359-6462(01)00955-1.
  29. Tyumentsev, A.N., Ditenberg, I.A., Pinzhin, Yu.P., Korotaev, A.D., and Valiev, R.Z. Microstructure and Mechanisms of its Formation in Submicrocrystalline Copper Produced by Severe Plastic Deformation. The Physics of Metals and Metallography, 2003, vol. 96, iss. 4, pp. 378–387.
  30. Hebesberger T., Stuwe H.P., Vorhauer A., Wetscher F., Pippan R.. Structure of Cu deformed by high pressure torsion. Acta Materialia, 2005, vol. 53, iss. 2, pp. 393–402. DOI: 10.1016/j.actamat.2004.09.043.
               

А.В. Столбовский, В.В. Попов, Е.Н. Попова

СТРУКТУРА И ТЕРМИЧЕСКАЯ СТАБИЛЬНОСТЬ ОЛОВЯНИСТОЙ БРОНЗЫ, НАНОСТРУКТУРИРОВАННОЙ МЕТОДОМ КРУЧЕНИЯ ПОД ВЫСОКИМ ДАВЛЕНИЕМ

Методами просвечивающей электронной микроскопии и измерения микротвердости исследована эволюция структуры бронзы с содержанием 7,4 мас. % олова при интенсивной пластической деформации кручением под высоким давлением при комнатной температуре. Изучена термическая стабильность получаемой структуры при последующих отжигах. Показано, что повышенное содержание примесей существенно замедляет релаксационные процессы. Установлено, что наряду с повышенной термической стабильностью полученной наноструктуры, переход от равномерного общего увеличения размеров кристаллитов при нагреве к резкому развитию рекристаллизационных процессов в изучаемом сплаве заметно более плавный, чем в чистых металлах.

Ключевые слова: Наноструктурирование, наноструктуры, интенсивная пластическая деформация, кручение под высоким давлением, границы зерен, термическая стабильность, оловянистая бронза

Библиография:

  1. Valiev R. Z. Nanostructuring of metals by severe plastic deformation for advanced properties // Nature Materials. – 2004. – Vol. 3. – P. 511–516. – DOI: 10.1038/nmat1180.
  2. Producing bulk ultrafine-grained materials by severe plastic deformation / R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, Y. T. Zhu // The Journal of the Minerals, Metals& Materials Society. – 2006. – Vol. 58. – Iss. 4. – P. 33–39. – DOI: 10.1007/s11837-006-0213-7.
  3. Валиев Р. З., Александров И. В. Объемные наноструктурные металлические материалы. – М. : Академкнига, 2007. – 398 с. – ISBN 978-5-94628-217-8.
  4. Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science // Acta Materialia. – 2013. – Vol. 61. – Iss. 3. – P. 782–817. – DOI:10.1016/j.actamat.2012.10.038.
  5. Advantages and limitations of HPT: A review / R. Pippan, S. Scheriau, A. Hohenwarte, M. Hafok // Materials Science Forum. – 2008. – Vol. 584–586. – P. 16–21. – DOI: 10.4028/www.scientific.net/MSF.584-586.16.
  6. Vorhauer A., Pippan R. Microstructure and thermal stability of tungsten based materials processed by means of Severe Plastic Deformation // Materials Science Forum. – 2003. – Vol. 426–432. – P. 2747–2752. – DOI:10.4028/www.scientific.net/MSF.426-432.2747.
  7. Sabirov I., Pippan R. Characterization of tungsten fragmentation in a W–25% Cu composite after high-pressure torsion // Materials Characterization. – 2007. – Vol. 58, iss. 10. – P. 848–853. – DOI: 10.1016/j.matchar.2006.08.001.
  8. Structure and properties of grain boundaries in submicrocrystalline W obtained by severe plastic deformation / V. V. Popov, R. Z. Valiev, E. N. Popova, A. V. Sergeev, A. V. Stolbovsky, V. U. Kazihanov // Defect and Diffusion Forum. – 2009. – Vol. 283–286. – P. 629–638. – DOI: 10.4028/www.scientific.net/DDF.283-286.6299.
  9. Structure and properties of grain boundaries in submicrocrystalline molybdenum prepared by high-pressure torsion / V. V. Popov, G. P. Grabovetskaya, A. V. Sergeev, I. P. Mishin, A. N. Timofeev, E. V. Kovalenko // The Physics of Metals and Metallography. – 2010. – Vol. 109, iss. 5. – P. 556–562. – DOI: 10.1134/S0031918X10050169.
  10. Thermal stability of nanocrystalline Nb produced by severe plastic deformation / E. N. Popova, V. V. Popov, E. P. Romanov, V. P. Pilyugin // The Physics of Metals and Metallography. – 2006. – Vol. 101, iss. 1. – P. 52–67. – DOI: 10.1134/S0031918X06010078.
  11. Effect of the degree of deformation on the structure and thermal stability of nanocrystalline niobium produced by high-pressure torsion / E. N. Popova, V. V. Popov, E. P. Romanov, V. P. Pilyugin // The Physics of Metals and Metallography. – 2007. – Vol. 103, iss. 4. – P. 407–413. – DOI: 10.1134/S0031918X0704014X.
  12. Popov V. V., Popova E. N., Stolbovskiy A. V. Nanostructuring Nb by various techniques of severe plastic deformation // Materials Science and Engineering: A. – 2012. – Vol. 539. – P. 22–29. – DOI:10.1016/j.msea.2011.12.082.
  13. Schafler E., Pippan R. Effect of thermal treatment on microstructure in high pressure torsion (HPT) deformed nickel // Materials Science and Engineering: A. – 2004. – Vol. 387–389. – P. 799–804. – DOI:10.1016/j.msea.2004.01.112.
  14. Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion / H. W .Zhang, X. Huang, R. Pippan, N. Hansen // Acta Materialia. – 2010. – Vol. 58, iss. 5. – P. 1698–1707. – DOI:10.1016/j.actamat.2009.11.012.
  15. Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure / V. P. Pilyugin, T. M. Gapontseva, T. I. Chashchukhina, L. M. Voronova, L. I. Shchinova, M. V. Degtyarev // The Physics of Metals and Metallography. – 2008. – Vol. 105, iss. 4. – P. 409–419. – DOI: 10.1134/S0031918X08040157.
  16. Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained / V. V. Popov, E. N. Popova, A. V. Stolbovskii, V. P. Pilyugin, N. K. Arkhipova // The Physics of Metals and Metallography. – 2012. – Vol. 113, iss. 3. – P. 295–301. – DOI: 10.1134/S0031918X1203009X.
  17. Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures / V. V. Popov, E. N. Popova, A. V. Stolbovskii, V. P. Pilyugin // Materials Science and Engineering: A. – Vol. 528, iss. 3. – P. 1491–1496. – DOI:10.1016/j.msea.2010.10.052.
  18. Rathmayr G. B., Pippan R. Influence of impurities and deformation temperature on the saturation microstructure and ductility of HPT-deformed nickel // Acta Materialia. – 2011. – Vol. 59, iss. 19. – P. 7228–7240. – DOI: 10.1016/j.actamat.2011.08.023.
  19. Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen / V. V. Popov, E. N. Popova, D. D. Kuznetsov, A. V. Stolbovskii, V. P. Pilyugin // The Physics of Metals and Metallography. – 2014. – Vol. 115, iss. 7. – P. 682–691. – DOI: 10.1134/S0031918X14070060.
  20. Structure and thermal stability of Cu after severe plastic deformation / V. V. Popov, A. V. Stolbovsky, E. N. Popova, V. P. Pilyugin // Defect and Diffusion Forum. – 2010. – Vol. 297–301. – P. 1312–1321. – DOI:10.4028/www.scientific.net/DDF.
  21. Structure, thermal stability, and state of grain boundaries of copper subjected to high[1]pressure torsion at cryogenic temperatures / A. V. Stolbovsky, V. V. Popov, E. N. Popova, V. P. Pilyugin // Bulletin of the Russian Academy of Sciences: Physics. – 2014. – Vol. 78, iss. 9. – P. 908–916. – DOI: 10.3103/S1062873814090299.
  22. Fabrication and thermal stability of a nanocrystalline Ni-Al-Cr alloy: comparison with pure Cu and Ni / K. Oh-ishi, Z. Horita, D. J. Smitz, R. Z. Valiev, M. Nemoto, T. G. Langdon // Journal of Materials Research. – 1999. – Vol. 14, iss. 11. – P. 4200–4207.
  23. Saturation of fragmentation during severe plastic deformation / R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier // Annual Review of Materials Research. – 2010. – Vol. 40. – P. 319–343. – DOI: 10.1146/annurev-matsci-070909-104445.
  24. Конькова Т. Н., Миронов С. Ю., Корзников А. В. Аномальный рост зерен в криогенно-деформированной меди // Физическая мезомеханика. – 2011. – Т. 14, № 4. – С. 29–38.
  25. Konkova T. N., Mironov S. Y., Korznikov A. V. Room-temperature instability of the structure of copper deformed at a cryogenic temperature // Russian metallurgy (Metally). – 2011. – Vol. 2011, iss. 7. – P. 689–698. – DOI: 10.1134/S0036029511070081.
  26. Popova E. N., Romanov E. P., Sudareva S. V. A15 superconducting composites and high[1]strength Cu–Nb conductors // The Physics of Metals and Metallography. – 2003. – Vol. 96, iss. 2. – P. 146–159.
  27. Influence of Different Deformation Techniques on the Structure of Bronze Matrix in Multifilamentary Nb3Sn Composites / E. N. Popova, L. A. Rodionova, S. V. Sudareva, E. P. Romanov, N. E. Khlebova, A. M. Chukin // The Physics of Metals and Metallography. – 1993. – Vol. 76, iss. 2. – P. 228–234.
  28. Microhardness and microstructural evolution in pure nickel during high-pressure torsion / A. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev, T. G. Langton // Scripta Materialia. – 2001. – Vol. 44, iss. 12. – P. 2753–2758. – DOI:10.1016/S1359-6462(01)00955-1.
  29. Microstructure and Mechanisms of its Formation in Submicrocrystalline Copper Produced by Severe Plastic Deformation / A. N. Tyumentsev, I. A. Ditenberg, Yu. P. Pinzhin, A. D. Korotaev, and R. Z. Valiev // The Physics of Metals and Metallography. – 2003. – Vol. 96, iss. 4. – P. 378–387.
  30. Structure of Cu deformed by high pressure torsion / T. Hebesberger, H. P. Stuwe, A. Vorhauer, F. Wetscher, R. Pippan // Acta Materialia. – 2005. – Vol. 53, iss. 2. – P. 393–402. – DOI: 10.1016/j.actamat.2004.09.043.
               
PDF      

Библиографическая ссылка на статью

Stolbovsky A. V., Popov V. V., Popova E. N. Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion // Diagnostics, Resource and Mechanics of materials and structures. - 2015. - Iss. 5. - P. 118-132. -
DOI: 10.17804/2410-9908.2015.5.118-132. -
URL: http://dream-journal.org/issues/2015-5/2015-5_52.html
(accessed: 20.04.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru