Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2015 Выпуск 5

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

V. I. Voronin, V. L. Arbuzov, V. I. Bobrovskii, S. E. Danilov, K. A. Kozlov, N. V. Proskurnina, V. V. Sagaradze

PECULIARITIES OF RADIATION-INDUCED PROCESSES IN THE Cr-Ni-Mo AUSTENITIC STEELS STUDIED BY NEUTRON DIFFRACTION

DOI: 10.17804/2410-9908.2015.5.080-089

Understanding the mechanisms of radiation-induced phenomena in FCC-materials is of fundamental significance for the development of new austenitic reactor steels. An important role in these phenomena, along with the crystal structure and chemical composition of the matrix, belongs to doping elements and the microstructure of the material. In this paper, peculiarities of competing processes that proceed under fast neutron irradiation in Cr-Ni-Mo steels doped with Ti are studied by means of neutron diffraction. It is demonstrated that, on the one hand, new Ni3Ti g¢-phase particles are formed and, on the other hand, they dissolve to form interstitial Ti atoms. Besides, there is radiation-induced relaxation of microscopic stresses, which, in the case of large neutron fluences, overlaps with additional microstresses resulting from the accumulation of radiation-induced defects. The observed effects agree with the results we obtained for other austenitic steels.

Keywords: austenitic reactor steels, radiation damages, defects, radiation-induced processes, doping, neutron diffraction

References:

  1. Zeman A., Kaiser R., Inozemtsev V., Beatty R.L. IAEA activities on coordinated research of structural materials for advanced reactor systems. Journal of Nuclear Materials, 2012, vol. 428, iss. 1–3. – P. 3–5. DOI: 10.1016/j.jnucmat.2012.06.024.
  2. Voevodin V.N., Neklyudov I.M. Problems of radiation resistance of structural materials in nuclear power engineering. Visnik Kharkivskogo Universitetu. Ser. Fizika, 2006, no.746, iss.4, pp. 3–22. (In Russian).
  3. Okita T., Wolfer W.G., Garner F.A., and Sekimura N. Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling. Philosophical Magazine, 2005, vol. 85, iss. 18, pp. 2033–2048. DOI: 10.1080/14786430412331331871.
  4. David C., Panigrahi B.K., Balaji S., Balamurugan A.K., Nair K.G.M., Amarendra G., Sundar C.S., Baldev R. A study of the effect of titanium on the void swelling behavior of D9 steels by ion beam simulation. Journal of Nuclear Materials, 2008, vol. 383, iss. 1–2, pp.132–136. DOI: 10.1016/j.jnucmat.2008.08.049.
  5. Sagaradze V.V., Goshchitskii B.N., Volkova E.G., Voronin V.I., Berger I.F., and Uvarov A.I. Evolution of the Microstructure and Microstresses in the 40Kh4G18F2 Steel upon Carbide Aging. Physics of Metals and Metallogragraphy, 2011, vol. 111, iss. 1, pp. 80–90. DOI: 10.1134/S0031918X1101011X.
  6. Sagaradze V.V., Voronin V.I., Berger I.F., Volkova E.G., Goshchitskii B.N. Evolution of the microstructure and microdistortions in the austenitic Cr-Ni-Ti steel during aging. Physics of Metals and Metallogragraphy, 2011, vol. 12, iss. 5, pp. 517–525. DOI: 10.1134/S0031918X11050279.
  7. Sagaradze V.V., Nalesnik V.M., Lapin S.S., Aliabev V.M. Precipitation hardening and radiation damageability of austenitic stainless steels. Journal of Nuclear Materials, 1993, vol. 202, iss. 1–2, pp.137–144. DOI: 10.1016/0022-3115(93)90036-X.
  8. Krivoglaz M.A. X-ray and neutron diffraction in nonideal crystals, Berlin, Heidelberg, Springer Verlag Publ., 1996, 466 p.
  9. Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter., 1993, vol.192, iss. 1–2, pp. 55–69. DOI: 10.1016/0921-4526(93)90108-I.
  10. Ungar T., Borbely A. The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl. Phys. Lett., 1996, vol. 69, iss. 21, pp.3173–3175. DOI: 10.1063/1.117951.
  11. Konobeevsky S.T. Deistvie oblucheniya na materialy [Effect of Irradiation on Materials]. M., Atomizdat Publ., 1967, 402 p. (In Russian).
  12. Alab’yev V.M., Vologin V.G., Dubinin S.F., Lapin S.S., Parkhomenko V.D., Sagaradze V.V. Neutron diffraction and electron microscopic investigation of decomposition and radiation induced ageing of Cr-Ni-Ti austenitic alloys. Physics of Metals and Metallography, 1990, vol. 70, iss. 2. pp. 131–137.
       

В. И. Воронин, В. Л. Арбузов, В. И. Бобровский, С. Е. Данилов, К. А. Козлов,  Н. В. Проскурнина, В. В. Сагарадзе

НЕЙТРОННО-ДИФРАКЦИОННЫЕ ИССЛЕДОВАНИЯ ОСОБЕННОСТЕЙ РАДИАЦИОННО-ИНДУЦИРОВАННЫХ ПРОЦЕССОВ В ХРОМ-НИКЕЛЬ-МОЛИБДЕНОВЫХ АУСТЕНИТНЫХ РЕАКТОРНЫХ СТАЛЯХ

Понимание механизмов радиационно-индуцированных явлений в ГЦК материалах имеет фундаментальное значение для разработки новых аустенитных реакторных сталей. В этих явлениях помимо кристаллической структуры и химического состава матрицы важнейшую роль играют легирующие примеси и микроструктурное состояние материалов. В работе средствами нейтронографии вскрыты особенности конкурентных процессов, протекающих при облучении быстрыми нейтронами в легированных титаном хром-никель-молибденовых сталях. Показано, что, с одной стороны, происходит образование новых частиц g¢-фазы Ni3Ti, а с другой – идет их растворение с образованием междоузельных атомов титана. Также протекают процессы радиационно-стимулированной релаксации микронапряжений, перекрывающиеся в случае больших нейтронных флюенсов возникновением дополнительных микронапряжений вследствие накопления радиационных дефектов. Наблюдавшиеся эффекты согласуются с результатами, полученными авторами для других аустенитных сталей.

Ключевые слова: аустенитные реакторные стали, радиационно-индуцированные процессы, легирование, нейтронная ди-фракция

Библиография:

  1. IAEA activities on coordinated research of structural materials for advanced reactor systems / A. Zeman, R. Kaiser, V. Inozemtsev, R. L. Beatty // Journal of Nuclear Materials. – 2012. – Vol. 428, iss. 1–3. – P. 3–5. DOI: 10.1016/j.jnucmat.2012.06.024.
  2. Воеводин В. Н., Неклюдов И. М. Проблемы радиационной стойкости конструкционных материалов ядерной энергетики // Вiсник Харькивського университету. Сер. Физика. – 2006. – № 746, вып. 4. – С. 3–22.
  3. Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling / T. Okita, W. G. Wolfer, F. A. Garner, and N. Sekimura // Philosophical Magazine. – 2005. – Vol. 85, iss. 18. – P. 2033–2048. – DOI: 10.1080/14786430412331331871.
  4. A study of the effect of titanium on the void swelling behavior of D9 steels by ion beam simulation / C. David, B. K. Panigrahi, S. Balaji, A. K. Balamurugan, K. G. M. Nair, G. Amarendra, C. S. Sundar, Raj Baldev // Journal of Nuclear Materials. – 2008. – Vol. 383, iss. 1–2. – P.132–136. – DOI: 10.1016/j.jnucmat.2008.08.049.
  5. Evolution of the Microstructure and Microstresses in the 40Kh4G18F2 Steel upon Carbide Aging / V. V. Sagaradze, B. N. Goshchitskii, E. G. Volkova, V. I. Voronin, I. F. Berger, and I. Uvarov // Physics of Metals and Metallogragraphy. – 2011. – Vol. 111, iss. 1. – P. 80–90. – DOI: 10.1134/S0031918X1101011X.
  6. Evolution of the microstructure and microdistortions in the austenitic Cr-Ni-Ti steel during aging / V. V. Sagaradze, V. I. Voronin, I. F. Berger, E. G. Volkova, B. N. Goshchitskii // Physics of Metals and Metallogragraphy. – 2011. – Vol. 12, iss. 5. – P. 517–525. – DOI: 10.1134/S0031918X11050279.
  7. Precipitation hardening and radiation damageability of austenitic stainless steels / V. V. Sagaradze, V. M. Nalesnik, S. S. Lapin, V. M. Aliabev // Journal of Nuclear Materials. – 1993. – Vol. 202, iss. 1–2. – P.137–144. – DOI: 10.1016/0022-3115(93)90036-X.
  8. Krivoglaz M. A. X-ray and Neutron Diffraction in Nonideal Crystals. – Berlin, Heidelberg: Springer Verlag Publ., 1996. – 466 p.
  9. Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction // Physica B: Condensed Matter. – 1993. – Vol.192, iss. 1–2. – P. 55–69. – DOI: 10.1016/0921-4526(93)90108-I.
  10. Ungar T., Borbely A. The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis // Appl. Phys. Lett. – 1996. – Vol. 69, iss. 21. – P. 3173–3175. – DOI: 10.1063/1.117951.
  11. Конобеевский С. Т. Действие облучения на материалы. – М. : Атомиздат, 1967. – 402 с.
  12. Neutron diffraction and electron microscopic investigation of decomposition and radiation induced ageing of Cr-Ni-Ti austenitic alloys / V. M. Alab’yev, V. G. Vologin, S. F. Dubinin, S. S. Lapin, V. D. Parkhomenko, V. V. Sagaradze // Physics of Metals and Metallography. – 1990. – Vol. 70, iss. 2. – P. 131–137.
       
PDF      

Библиографическая ссылка на статью

Peculiarities of Radiation-Induced Processes in the Cr-Ni-Mo Austenitic Steels Studied by Neutron Diffraction / V. I. Voronin, V. L. Arbuzov, V. I. Bobrovskii, S. E. Danilov, K. A. Kozlov, N. V. Proskurnina, V. V. Sagaradze // Diagnostics, Resource and Mechanics of materials and structures. - 2015. - Iss. 5. - P. 80-89. -
DOI: 10.17804/2410-9908.2015.5.080-089. -
URL: http://dream-journal.org/issues/2015-5/2015-5_46.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru