Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2015 Выпуск 4

2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

S. V. Smirnov, I. A. Veretennikova

COMPARATIVE EVALUATION OF METAL DAMAGE ON THE FREE LATERAL SURFACE OF SINGLE-LAYER AND THREE-LAYER STRIPS UNDER ROLLING

The paper compares the stress-strain state and damage accumulation in a steel constituting a “steel 20” single-layer strip and “12Cr18Ni10Ti – steel 20 – 12Cr18Ni10Ti” and “copper M1 – steel 20 – copper M1” three-layer strips under rolling. The areas in the middle of the free lateral surface that are the most dangerous in terms of cohesive destruction are discussed. The finite el-ement method is used to simulate the rolling process. Kolmogorov’s model of damage and the relation of peak plasticity to the stress state coefficient and the Lode coefficient are used for cal-culations. The analysis of the data shows a relationship between the configuration of the defor-mation zone and metal deformability. In particular, it is better to roll strips of steel 20 in large-diameter rolls and “copper M1 – steel 20 – copper M1” strips in small-diameter rolls. When “12Cr18Ni10Ti – steel 20 – 12Cr18Ni10Ti” strips ate rolled, the diameter of rolls has no essential effect on damage accumulation in the central layer. The proposed conclusions can be used only for the materials under study, since the mechanisms of damage accumulation for specific materials may vary depending on the peak plasticity diagram.

Keywords: multilayer metal, rolling, stress-strain state, damage

С. В. Смирнов, И. А. Веретенникова

СРАВНИТЕЛЬНАЯ ОЦЕНКА ПОВРЕЖДЕННОСТИ МЕТАЛЛА НА СВОБОДНОЙ БОКОВОЙ ПОВЕРХНОСТИ ПРИ ПРОКАТКЕ ОДНОСЛОЙНЫХ И ТРЕХСЛОЙНЫХ ПОЛОС

Проведено сравнение напряженно-деформированного состояния и накопления поврежденности стали 20 в составе однослойной полосы и трехслойных полос «12Х18Н10Т–сталь 20–12Х18Н10Т», «медь М1–сталь 20–медь М1» при прокатке. Рассмотрены наиболее опасные для когезионного разрушения участки на середине высоты свободной боковой поверхности. Моделирование осуществлено методом конечных элементов. Для расчетов использованы модель поврежденности В.Л. Колмогорова и зависимость предельной пластичности от показателя напряженного состояния и показателя Лоде. Установлено, что форма очага деформации ℓ/Hср оказывает влияние на деформируемость металла. Расчеты показывают, что полосы из стали 20 целесообразно катать в валках большого диаметра, полосы «медь М1–сталь 20–медь М1» – в валках меньшего диаметра. Диаметр валков при прокатке полосы «12Х18Н10Т–сталь 20–12Х18Н10Т» не оказывает существенного влияния на накопление поврежденности в центральном слое. Данные выводы имеют частный характер, и закономерности накопления поврежденности для конкретных материалов могут изменяться в зависимости от диаграммы предельной пластичности.

Ключевые слова: слоистый листовой композиционный металл, прокатка, напряженно-деформированное состояние, поврежденность
       
PDF        

 

импакт-фактор

 

МРДМК 2018 title=
МРДМК 2018

ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук
Главный редактор:  Э.C. Горкунов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2018, www.imach.uran.ru