Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2015 Выпуск 3

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva

THE TRIBOLOGICAL PERFORMANCES OF A NiCrBSi – TiC LASER-CLAD COMPOSITE COATING UNDER ABRASION AND SLIDING FRICTION

DOI: 10.17804/2410-9908.2015.3.083-097

A comparative analysis of the structure, phase composition, microhardness, tribological performances (wear intensity, friction coefficient, specific wearing work) and wear mechanisms in fixed abrasive tests (abrasives with different hardness, namely, corundum Al2O3 with ~ HV 2000 and silicon carbide with ~ HV 3000) and under dry sliding friction against die steel has been carried out for a NiCrBSi coating and a NiCrBSi–TiC (with 25% wt. TiC addition) composite coating obtained on the surface of steel by gas powder laser cladding. The high-strength frame of coarse titanium carbide particles in the composite coating structure has a significant positive impact on resistance to abrasive wear and sliding friction, and the effectiveness greatly depends on the contact loading conditions and wear mechanism realized.

Keywords: laser cladding, NiCrBSi – TiC composite coating, structure, microhardness, abrasive wear, sliding friction

References:

1. Kurganova Yu.A., Kolmakov A.G. Konstruktsionnye metallomatrichnye kompozitsionnye materialy: uchebnoe posobie [Constructional metal matrix composite materials: educational book]. Moscow, MGTU im. N. E. Baumana Publ., 2015. 141 p. (In Russian).
2. Kurganova Yu.A. Development prospects of commercial metal matrix composite materials. Servis v Rossii i za rubezhom, 2012, vol. 30, no. 3, pp. 235–240. (In Russian).
3. Yan H., Zhang P., Yu Zh., Lu Q., Yang Sh., Li Ch. Microstructure and tribological properties of laser-clad Ni–Cr/TiB2 composite coatings on copper with the addition of CaF2. Surface and Coatings Technology, 2012, vol. 206, pp. 4046–4053.
4. Nurminen J., Näkki J., Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int. Journal of Refractory Metals and Hard Materials, 2009, vol. 27, pp. 472–478.
5. Anandkumar R., Almeida A., Vilar R. Wear behavior of Al–12Si/TiB2 coatings produced by laser cladding. Surface and Coatings Technology, 2011, vol. 205, pp. 3824–3832.
6. Tobar M.J., Álvarez C., Amado J.M., Rodríguez G., Yánez A. Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel. Surface and Coatings Technology, 2006, vol. 200, pp. 6313–6317.
7. Weng F., Chen Ch., Yu H. Research status of laser cladding on titanium and its alloys: A review. Materials and Design, 2014, vol. 58, pp. 412–425.
8. Makarov A.V., Savrai R.A., Osintseva A.L., Malygina I.Yu. The influence of the chemical composition on the tribological performances of Cr-Ni coatings obtained by gas powder laser cladding. Izvestiya Chelyabinskogo nauchnogo tsentra, 2009, no. 2 (44), pp. 28–33. (In Russian).
9. Soboleva N.N., Malygina I.Yu., Osintseva A.L., Pozdejeva N.A. The influence of the microstructure and phase composition on tribological performances of NiCrBSi coatings. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy Akademii Nauk, 2011, vol. 13, no. 4 (3), pp. 869–873. (In Russian).
10. Cai B., Tan Y.-F., He L., Tan H., Gao L. Tribological properties of TiC particles reinforced Ni-based alloy composite coatings. Transactions of Nonferrous Metals Society of China, 2013, vol. 13, pp. 1681–1688.
11. Yang J., Liu F., Miao X., Yang F. Influence of laser cladding process on the magnetic properties of WC–FeNiCr metal–matrix composite coatings. Journal of Materials Processing Technology, 2012, vol. 212, pp. 1862–1868.
12. Niranatlumpong P., Koiprasert H. Phase transformation of NiCrBSi–WC and NiBSi–WC arc sprayed coatings. Surface and Coatings Technology, 2011, vol. 206, pp. 440–445.
13. Guo Ch., Chen J., Zhou J., Zhao J., Wang L., Yu Y., Zhou H. Effects of WC—Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating. Surface and Coatings Technology, 2012, vol. 206, pp. 2064–2071.
14. Liyanage T., Fisher G., Gerlich A.P. Microstructures and abrasive wear performance of PTAW deposited Ni–WC overlays using different Ni-alloy chemistries. Wear, 2012, vol. 274–275, pp. 345–354.
15. Si S.-H., Yuan X.-M., Liu Y.-L., He Y.-Z., Keesam Sh. Effect of Laser Power on Microstructure and Wear Resistance of WCP/Ni Cermet Coating. Journal of Iron and Steel Research, International, 2006, vol. 13, Iss. 3, pp. 74–78.
16. Mendez P.F., Barnes N., Bell K., Borle S.D., Gajapathi S.S., Guest S.D., Izadi H., Gol A.K., Wood G. Welding processes for wear resistant overlays. Journal of Manufacturing Processes, 2014, vol. 16, pp. 4–25.
17. Zikin A., Antonov M., Hussainova I., Katona L., Gavrilovic´ A. High temperature wear of cermet particle reinforced NiCrBSi hardfacings. Tribology International, 2013, vol. 98, pp. 45–55.
18. Li Q., Song G.M., Zhang Y.Z., Lei T.C., Chen W.Z.. Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC. Wear, 2003, vol. 254, iss. 3–4, pp. 222–229.
19. Chao M.-J., Wang W.-L., Liang E.-J., Ouyang D. Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding. Surface and Coatings Technology, 2008, vol. 202, pp. 1918–1922.
20. Zikin A., Badisch E., Hussainova I., Tomastik C., Danninger H. Characterisation of TiC—NiMo reinforced Ni-based hardfacing. Surface and Coatings Technology, 2013, vol. 236, pp. 36–44.
21. Wang X.H., Zhang M., Liu X.M., Qu S.Y., Zou Z.D. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding. Surface and Coatings Technology, 2008, vol. 202, pp. 3600–3606.
22. Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. The formation of a NiCrBSi–TiC composite coating with increased abrasive wear resistance by gas powder laser cladding. Uprochnyayushchie tekhnologii i pokrytiya, 2013, no. 11 (107), pp. 38–44. (In Russian).
23. Sun R.L., Lei Y.W., Niu W. Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser. Surface and Coatings Technology, 2009, vol. 203, pp. 1395–1399.
24. Lei Y., Sun R., Tang Y., Niu W. Numerical simulation of temperature distribution and TiC growth kinetics for high power laser clad TiC/NiCrBSiC composite coatings. Optics and Laser Technology, 2012, vol. 44, pp. 1141–1147.
25. Lei Y., Sun R., Lei J., Tang Y., Niu W. A new theoretical model for high power laser clad TiC/NiCrBSiC composite coatings on Ti6Al4V alloys. Optics and Lasers in Engineering, 2010, vol. 48, pp. 899–905.
26. Duraiselvam M., Galun R., Wesling V., Mordike B.L., Reiter R., Oligmüller J., Buvanashekaran G. Cavitation erosion resistance of Ti6Al4V laser alloyed with TiC-reinforced dual phase intermetallic matrix composites. Materials Science and Engineering A, 2007, vol. 454–455, pp. 63–68.
27. Tan Y.-F., He L., Wang X.-L., Hong X., Wang W.-G. Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings. Transactions of Nonferrous Metals Society of China, 2014, vol. 24, pp. 2566–2573.
28. Cai B., Tan Y.-F., Tu Y.-Q., Wang X.-L., Tan H. Tribological properties of Ni-base alloy composite coating modified by both graphite and TiC particles. Transactions of Nonferrous Metals Society of China, 2011, vol. 21, pp. 2426–2432.
29. Dawei Z., Li T., Lei T.C. Laser cladding of Ni–Cr3C2/(Ni+Cr) composite coating. Surface and Coatings Technology, 1988, vol. 110, pp. 81–85.
30. Makarov A.V., Gorkunov E.S., Malygina I.Yu., Kogan L.Kh., Savrai R.A., Osintseva A.L. Eddy-current testing of the hardness, wear resistance and thickness of coatings prepared by gaspowder laser cladding. Russian Journal of Nondestructive Testing, 2009, vol. 45, iss. 11, pp 797–805.
31. Makarov A.V., Pozdejeva N.A., Savrai R.A., Yurovskikh A.S., Malygina I.Yu. Improvement of wear resistance of quenched structural steel by nanostructuring frictional treatment. Journal of Friction and Wear, 2012, vol. 33, no. 6, pp. 433–442.
32. Khrushchov M.M., Babichev M.A. Abrazivnoye iznashivanie [Abrasive wear]. Moscow, Nauka Publ., 1970. 252 p. (In Russian).
33. Kragelsky I.V., Dobychin M.N., Kombalov V.S. Osnovy raschetov na trenie i iznos [A basis for friction and wear calculation]. Moscow, Mashinostroenie Publ., 1977. 526 p. (In Russian).
34. Kragelsky I.V. Trenie i iznos [Friction and wear]. Moscow, Mashinostroenie Publ., 1968, 480 p. (In Russian).
35. Golego N.L. Skhvatyvanie v mashinakh i metody ego ustraneniya [Seizure in machines and methods for its elimination]. Kiev, Tekhnika Publ., 1966, 231 p. (In Russian).
36. Nosovsky I.G. Vliyanie gazovoy sredy na iznos metallov [The effect of a gaseous medium on metal wear]. Kiev, Tekhnika Publ., 1968, 181 p. (In Russian).
37. Kostatsky B.I., Nosovsky I.G., Karaulov A.K. et al. Poverkhnostnaya prochnost materialov pri trenii [Surface strength of materials during friction]. Kiev, Tekhnika Publ., 1976. 296 p. (In Russian).

А. В. Макаров, Н. Н. Соболева, И. Ю. Малыгина, А. Л. Осинцева

ТРИБОЛОГИЧЕСКИЕ СВОЙСТВА КОМПОЗИЦИОННОГО ПОКРЫТИЯ NiCrBSi – TiC, ПОЛУЧЕННОГО ЛАЗЕРНОЙ НАПЛАВКОЙ, ПРИ АБРАЗИВНОМ ВОЗДЕЙСТВИИ И ТРЕНИИ СКОЛЬЖЕНИЯ

Проведен сравнительный анализ структурно-фазового состояния, микротвердости, трибологических свойств (интенсивность изнашивания, коэффициент трения, удельная работа изнашивания) и механизмов изнашивания при испытаниях по закрепленному абразиву различной твердости (корунд Al2O3 твердостью ~ HV 2000, карбид кремния SiC твердостью ~ HV 3000), а также в условиях трения скольжения без смазки по стали Х12М базового покрытия NiCrBSi и композиционного покрытия NiCrBSi – TiC (с добавкой 25% масс. TiC), полученных на поверхности пластины из стали Ст3 методом газопорошковой лазерной наплавки. Установлено, что сформированный в структуре композиционного покрытия высокопрочный каркас из крупных частиц карбида титана TiC оказывает на сопротивление изнашиванию при абразивном воздействии и трении скольжения существенное положительное влияние, эффективность которого в сильной степени зависит от условий контактного нагружения и реализующихся механизмов изнашивания.

Ключевые слова: лазерная наплавка, композиционное покрытие NiCrBSi – TiC, структура, микротвердость, абразивное изнашивание, трение скольжения

Библиография:

  1. Курганова Ю. А., Колмаков. А. Г. Конструкционные металломатричные композиционные материалы: учебное пособие. – М. : Изд-во МГТУ им. Н. Э. Баумана, 2015. – 141 с.
  2. Курганова Ю. А. Перспективы развития металломатричных композиционных материалов промышленного назначения // Сервис в России и за рубежом. – 2012. – Т. 30, № 3. – С. 235–240.
  3. Yan H., Zhang P., Yu Zh., Lu Q., Yang Sh., Li Ch. Microstructure and tribological properties of laser-clad Ni–Cr/TiB2 composite coatings on copper with the addition of CaF2 // Surface and Coatings Technology. – 2012. – Vol. 206. – P. 4046–4053.
  4. Nurminen J., Näkki J., Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding // Int. Journal of Refractory Metals and Hard Materials. – 2009. – Vol. 27. – P. 472–478.
  5. Anandkumar R., Almeida A., Vilar R. Wear behavior of Al–12Si/TiB2 coatings produced by laser cladding // Surface and Coatings Technology. – 2011. – Vol. 205. – P. 3824–3832.
  6. Morphology and characterization of laser clad composite NiCrBSi—WC coatings on stainless steel / M. J. Tobar, C. Álvarez, J. M. Amado, G. Rodríguez, A. Yánez // Surface and Coatings Technology. – 2006. – Vol. 200. – P. 6313–6317.
  7. Weng F., Chen Ch., Yu H. Research status of laser cladding on titanium and its alloys: A review // Materials and Design. – 2014. – Vol. 58. – P. 412–425.
  8. Влияние химического состава на трибологические свойства хромоникелевых покрытий, полученных методом газопорошковой лазерной наплавки / А. В. Макаров, Р. А. Саврай, А. Л. Осинцева, И. Ю. Малыгина // Известия Челябинского научного центра. – 2009. – № 2 (44). – C. 28–33.
  9. Влияние микроструктуры и фазового состава на трибологические свойства nicrbsi лазерных покрытий / Н. Н. Соболева, И. Ю. Малыгина, А. Л. Осинцева, Н. А. Поздеева // Известия Самарского научного центра Российской академии наук. – 2011. – Т. 13, № 4 (3). – С. 869–873.
  10. Tribological properties of TiC particles reinforced Ni-based alloy composite coatings / B. Cai, Y.-F. Tan, L. He, H. Tan, L. Gao // Transactions of Nonferrous Metals Society of China. – 2013. – Vol. 13. – P. 1681–1688.
  11. Influence of laser cladding process on the magnetic properties of WC–FeNiCr metal–matrix composite coatings / J. Yang, F. Liu, X. Miao, F. Yang // Journal of Materials Processing Technology. – 2012. – Vol. 212. – P. 1862–1868.
  12. Niranatlumpong P., Koiprasert H. Phase transformation of NiCrBSi–WC and NiBSi–WC arc sprayed coatings // Surface and Coatings Technology. – 2011. – Vol. 206. – P. 440–445.
  13. Effects of WC–Ni content on microstructure and wear resistance of laser cladding Ni–based alloys coating / Ch. Guo, J. Chen, J. Zhou, J. Zhao, L. Wang, Y. Yu, H. Zhou // Surface and Coatings Technology. – 2012. – Vol. 206. – P. 2064–2071.
  14. Liyanage T., Fisher G., Gerlich A. P. Microstructures and abrasive wear performance of PTAW deposited Ni–WC overlays using different Ni-alloy chemistries // Wear. – 2012. – Vol. 274–275. – P. 345–354.
  15. Effect of Laser Power on Microstructure and Wear Resistance of WCP/Ni Cermet Coating / S.-H. Si, X.-M. Yuan, Y.-L. Liu, Y.-Z. He, Sh. Keesam // Journal of Iron and Steel Research, International. – 2006. – Vol. 13. – Iss. 3. – P. 74–78.
  16. Welding processes for wear resistant overlays / P. F. Mendez, N. Barnes, K. Bell, S. D. Borle, S. S. Gajapathi, S. D. Guest, H. Izadi, A. K. Gol, G. Wood // Journal of Manufacturing Processes. – 2014. – Vol. 16. – P. 4–25.
  17. High temperature wear of cermet particle reinforced NiCrBSi hardfacings / A. Zikin, M. Antonov, I. Hussainova, L. Katona, A. Gavrilovic´ // Tribology International. – 2013. – Vol. 98. – P. 45–55.
  18. Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC / Q. Li, G. M. Song, Y. Z. Zhang, T. C. Lei, W. Z. Chen // Wear. – 2003. –  Vol. 254. – Iss. 3–4. – P. 222–229.
  19. Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding / M.-J. Chao, W.-L. Wang, E.-J. Liang, D. Ouyang // Surface and Coatings Technology. – 2008. – Vol. 202. – P. 1918–1922.
  20. Characterisation of TiC—NiMo reinforced Ni-based hardfacing / A. Zikin, E. Badisch, I. Hussainova, C. Tomastik, H. Danninger // Surface and Coatings Technology. – 2013. – Vol. 236. – P. 36–44.
  21. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding / X. H. Wang, M. Zhang, X. M. Liu, S. Y. Qu, Z. D. Zou // Surface and Coatings Technology. – 2008. – Vol. 202. – P. 3600–3606.
  22. Формирование композиционного покрытия NiCrBSi – TiC с повышенной абразивной износостойкостью методом газопорошковой лазерной наплавки / А. В. Макаров, Н. Н. Соболева, И. Ю. Малыгина, А. Л. Осинцева // Упрочняющие технологии и покрытия. – 2013. – №11 (107). – C. 38–44.
  23. Sun R. L., Lei Y. W., Niu W. Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser // Surface and Coatings Technology. – 2009. – Vol. 203. – P. 1395–1399.
  24. Numerical simulation of temperature distribution and TiC growth kinetics for high power laser clad TiC/NiCrBSiC composite coatings / Y. Lei, R. Sun, Y. Tang, W. Niu // Optics and Laser Technology. – 2012. – Vol. 44. – P. 1141–1147.
  25. A new theoretical model for high power laser clad TiC/NiCrBSiC composite coatings on Ti6Al4V alloys / Y. Lei, R. Sun, Y. Tang, W. Niu // Optics and Lasers in Engineering. – 2010. – Vol. 48. – P. 899–905.
  26. Cavitation erosion resistance of Ti6Al4V laser alloyed with TiC-reinforced dual phase intermetallic matrix composites / M. Duraiselvam, R. Galun, V. Wesling, B. L. Mordike, R. Reiter, J. Oligmüller, G. Buvanashekaran // Materials Science and Engineering A. – 2007. – Vol. 454–455. – P. 63–68.
  27. Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings / Y.-F. Tan, L. He, X.-L. Wang, X. Hong, W.-G. Wang // Transactions of Nonferrous Metals Society of China. – 2014. – Vol. 24. – P. 2566–2573.
  28. Tribological properties of Ni-base alloy composite coating modified by both graphite and TiC particles / B. Cai, Y.-F. Tan, Y.-Q. Tu, X.-L. Wang, H. Tan // Transactions of Nonferrous Metals Society of China. – 2011. – Vol. 21. – P. 2426–2432.
  29. Dawei Z., Li T., Lei T. C. Laser cladding of Ni–Cr3C2/(Ni+Cr) composite coating // Surface and Coatings Technology. – 1988. – Vol. 110. – P. 81–85.
  30. Вихретоковый контроль твердости, износостойкости и толщины покрытий, полученных методом газопорошковой лазерной наплавки / А. В. Макаров, Э. С. Горкунов, И. Ю. Малыгина, Л. Х. Коган, Р. А. Саврай, А. Л. Осинцева // Дефектоскопия. – 2009. – №11. – C. 68–78.
  31. Повышение износостойкости закаленной конструкционной стали наноструктурирующей фрикционной обработкой / А. В. Макаров, Н. А. Поздеева, Р. А. Саврай, А. С. Юровских, И. Ю. Малыгина // Трение и износ. – 2012. – Т. 33. – № 6. – С. 587–598.
  32. Хрущов М. М., Бабичев М. А. Абразивное изнашивание. – М. : Наука, 1970. – 252 с.
  33. Крагельский И. В., Добычин М. Н., Комбалов В. С. Основы расчетов на трение и износ. – М. : Машиностроение, 1977. – 526 с.
  34. Крагельский И. В. Трение и износ. – М. : Машиностроение, 1968. – 480 с.
  35. Голего Н. Л. Схватывание в машинах и методы его устранения. – Киев : Техника, 1966. – 231 с.
  36. Носовский И. Г. Влияние газовой среды на износ металлов. – Киев : Техника, 1968. – 181 с.
  37. Поверхностная прочность материалов при трении / Б. И. Костецкий, И. Г. Носовский, А. К. Караулов и др. – Киев : Техника, 1976. – 296 с.

             
PDF      

Библиографическая ссылка на статью

The Tribological Performances of a Nicrbsi – Tic Laser-Clad Composite Coating under Abrasion and Sliding Friction / A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva // Diagnostics, Resource and Mechanics of materials and structures. - 2015. - Iss. 3. - P. 83-97. -
DOI: 10.17804/2410-9908.2015.3.083-097. -
URL: http://dream-journal.org/issues/2015-3/2015-3_33.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru