

Received: 18.12.2023 Revised: 01.02.2024 Accepted: 16.02.2024 DOI: 10.17804/2410-9908.2024.1.011-017

EVALUATION OF THE STRENGTHENING COMPONENTS IN 0.4%C-1.3%Mn-0.1%V STEEL AFTER QUENCHING AND HIGH TEMPERATURE TEMPERING

Diagnostics, Resource and Mechanics of materials and structures Issue 1, 2024

A. V. Kuzmina^{a)} and V. A. Khotinov^{b), *}

Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia

^{a)} https://orcid.org/0009-0001-8651-7240 kuzari02@yandex.ru; ^{b)} https://orcid.org/0000-0003-0645-548X khotinov@yandex.ru

*Corresponding author. E-mail: khotinov@yandex.ru Address for correspondence: ul. Mira, 19, Ekaterinburg, 620002, Russia Tel.: +7 (908) 901–9912

Transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), and X-ray diffraction analysis are used to monitor the evolution of the microstructure of a microalloyed medium-carbon steel and to evaluate quantitatively the strengthening components and their relative contribution to the yield strength of this steel quenched and tempered at 650 °C. As the duration of isothermal tempering τ_{tem} increases from 2 to 3000 min, the steel softens in two stages: a sharp drop of the strength properties, ~100 MPa/min, at stage I ($\tau_{tem} \leq 8 \text{ min}$) is followed by weak softening, ~0.1 MPa/min at stage II ($\tau_{tem} \geq 64 \text{ min}$). It is shown that the main contribution ($q \sim 80\%$) to the yield strength of the steel is made by the combined effect of the dislocation and grain-boundary (due to the lath boundaries) strengthening mechanisms at the first stage of martensite tempering, and by subgrain strengthening at the second stage of tempering.

Keywords: medium-carbon steels, martensite, tempering, softening, strength properties, strengthening components, dislocation density, carbides, substructure

Acknowledgment

The work was financially supported by the Russian Ministry of Science and Higher Education (the Program of Development of the Ural Federal University within the Priority-2030 Program). The equipment of UrFU's shared research facilities was used in the testing.

References

1. Kurdyumov, V.G., Utevskiy, L.M., and Entin, R.I. *Prevrashcheniya v zheleze i stali* [Transformations in Iron and Steel]. Nauka Publ., Moscow, 1977, 236 p. (In Russian).

2. Shchastlivtsev, V.M., Mirzaev, D.A., and Yakovleva, I.V. *Struktura termicheski obrabotannoy stali* [The Structure of Heat-Treated Steel]. Metallurgiya Publ., Moscow, 1994, 288 p. (In Russian).

3. Goldsteyn, M.I., Grachev, S.V., and Veksler, Yu.G. *Spetsialnye stali* [Special Steels]. MISiS Publ., Moscow, 1999, 408 p. (In Russian).

4. Jiang, B., Wu, M., Zhang, M., Zhao, F., Zhao, Z., and Liu, Y. Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: effect of heat treatment parameters. *Materials Science and Engineering:* A, 2017, 707, 306–314. DOI: 10.1016/j.msea.2017.09.062.

5. Liu, F., Chen, K., Kang, C., Jiang, Z., and Ding, S. Effects of V–Nb microalloying on the microstructure and properties of spring steel under different quenching-tempering times. *Journal of Materials Research and Technology*, 2022, 19, 779–793. DOI: 1016/j.jmrt.2022.05.043.

Kuzmina A. V. and Khotinov V. A. Evaluation of the strengthening components in 0.4% C-1.3% Mn-0.1%V steel after quenching and high temperature tempering // Diagnostics, Resource and Mechanics of materials and structures. -2024. - Iss. 1. - P. 11-17. - DOI: 10.17804/2410-9908.2024.1.011-017.

6. Tkachev, E., Borisov, S., Belyakov, A., Kniaziuk, T., Vagina, O., Gaidar, S., and Kaibyshev, R. Effect of quenching and tempering on structure and mechanical properties of a low-alloy 0.25C steel. *Materials Science and Engineering: A*, 2023, 868, 144757. DOI: 10.1016/j.msea.2023.144757.

Diagnostics, Resource and Mechanics of materials and structures

7. Farber, V.M., Belenkiy, B.Z., and Goldshteyn, M.I. Evaluating the strength of low carbon low alloy steels from structural data. *Fizika Metallov i Metallovedenie*, 1975, 39 (2), 403–409. (In Russian).

ISSN 2410-9908

Подана в журнал: 18.12.2023 УДК 620.172 DOI: 10.17804/2410-9908.2024.1.011-017

ОЦЕНКА КОМПОНЕНТ УПРОЧНЕНИЯ В СТАЛИ 38Г2Ф ПОСЛЕ ТЕРМОУЛУЧШЕНИЯ

Diagnostics, Resource and Mechanics of materials and structures Issue 1, 2024

А. В. Кузьмина^{а)}, В. А. Хотинов ^{б), *}

Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина», ул. Мира, 19, г. Екатеринбург, 620002, Россия

> ^{a)} https://orcid.org/0009-0001-8651-7240 🛛 kuzari02@yandex.ru; ⁶⁾ https://orcid.org/0000-0003-0645-548X 🖾 khotinov@yandex.ru

*Ответственный автор. Электронная почта: khotinov@yandex.ru Адрес для переписки: ул. Мира, 28, г. Екатеринбург, 620002, Россия Тел.: +7 (908) 901–99–12

Методами просвечивающей электронной микроскопии, дифракции обратно рассеянных электронов и рентгеноструктурного анализа прослежена эволюция микроструктуры стали 38Г2Ф и проведена количественная оценка компонент упрочнения и их относительного вклада в предел текучести данной стали после закалки и отпуска при 650 °C. Разупрочнение стали при увеличении продолжительности изотермического отпуска τ_{0TI} от 2 до 3000 минут происходит в две стадии: интенсивный темп падения прочностных свойств $\Delta\sigma/\Delta\tau_{0TII} \sim 100$ МПа/мин на I стадии ($\tau_{0TII} \leq 8$ мин) сменяется слабым разупрочнением $\Delta\sigma/\Delta\tau_{0TII} \sim 0,1$ МПа/мин на II стадии ($\tau_{0TII} \geq 64$ мин). Показано, что основной вклад ($q \sim 80$ %) в предел текучести стали 38Г2Ф на I стадии отпуска мартенсита вносит совокупное действие дислокационного и зернограничного (за счет границ реек) механизмов упрочнения, а на II стадии отпуска – субзеренное упрочнение.

Ключевые слова: среднеуглеродистые стали, мартенсит, разупрочнение при отпуске, прочностные свойства, компоненты упрочнения, плотность дислокаций, карбиды, субструктура

1. Введение

Для получения необходимого комплекса функциональных свойств широкая номенклатура изделий из конструкционных сталей подвергается термоулучшению – закалке с последующим отпуском по различным температурно-временным ($t_{\rm отп}$, $\tau_{\rm отп}$) режимам. По изменению физико-механических свойств отпуск углеродистых сталей подразделяется на низкий (150–300 °C), средний (350–550 °C) и высокий (600–720 °C) [1, 2]. Температурные интервалы стадии отпуска ориентировочны и весьма условны, так как они изменяются при легировании сталей, а также при изменении скорости или длительности нагрева.

Первоначально изучение отпуска мартенсита проводилось по одной-двум методикам [1–3]. В последние годы появляется все больше работ [4–7], где параллельно с исследованием механических свойств используются различные методы изучения структуры и фазового состава, как традиционные (металлография, рентгеновский структурный и фазовый анализы), так и современные (просвечивающая и растровая электронная микроскопия, дифракция обратно рассеянных электронов (EBSD) и др.). Использование разнообразных экспериментальных методов изучения распада мартенсита дает возможность создать целостную картину и выделить факторы упрочнения на отдельных стадиях отпуска.

Kuzmina A. V. and Khotinov V. A. Evaluation of the strengthening components in 0.4% C-1.3%Mn-0.1%V steel after quenching and high temperature tempering // Diagnostics, Resource and Mechanics of materials and structures. – 2024. – Iss. 1. – P. 11–17. – DOI: 10.17804/2410-9908.2024.1.011-017.

Целью настоящей работы являлось отыскание на основе анализа прочностных свойств стадий распада мартенсита и происходящих на них структурно-фазовых превращений, а также оценка вклада основных компонент упрочнения в предел текучести стали 38Г2Ф.

Diagnostics, Resource and Mechanics of materials and structures Issue 1, 2024

2. Материал и методика исследований

Материалом исследования была конструкционная сталь $38\Gamma 2\Phi$, в композиции которой присутствовали 0,42 масс. % C, 1,3 масс. % Mn, 0,09 масс. % V. Для изучения структуры и механических испытаний темплеты длиной 60 мм и сечением 13×13 мм подвергали закалке от 900 °C в воде и отпуску при температуре 650 °C с выдержкой в течение 2, 8, 16, 32, 64 и 3000 минут с последующим охлаждением на воздухе.

Микроструктуру образцов изучали с помощью электронных микроскопов – просвечивающего JEM 2100 и растрового Jeol JSM-6490LV, а также электронно-ионного TermoFicher Scios2 LoVac с приставкой для построения карт дифракции обратно рассеянных электронов Oxford Symmetry (EBSD). Рентгеноструктурный анализ (PCA) проводился на дифрактометре Bruker Advance D8 в медном K_{α} -излучении с применением энергодисперсионного детектора.

Механические испытания на одноосное растяжение при комнатной температуре проводились на испытательной машине Instron 3382 на цилиндрических образцах диаметром 6 мм и рабочей длиной 40 мм. На каждый режим отпуска приходилось не менее 2 образцов.

3. Результаты и обсуждение

После выдержки $\tau_{\text{отп}} = 2$ мин при 650 °C сталь находится в высокопрочном состоянии ($\sigma_{0,2} = 1630 \text{ МПа}, \sigma_{B} = 1770 \text{ МПа}, \sigma_{0,2}/\sigma_{B} = 0,92, \delta = 9 \%, \psi = 50 \%$). На зависимости изменения прочностных свойств стали от продолжительности нагрева при 650 °C можно выделить две стадии отпуска (рис. 1).

Рис. 1. Зависимость прочностных свойств и плотности дислокаций стали $38\Gamma 2\Phi$ от продолжительности отпуска $\tau_{\text{отп}}$ при 650 °C: О – предел текучести $\sigma_{0,2(\text{т})}$, — временное сопротивление $\sigma_{\text{в}}$, О – плотность дислокаций $\rho_{\text{д}}$

Отпуск на I стадии ($\tau_{\text{отп}} = 2-8$ мин) приводит к интенсивному линейному падению прочности ($\Delta\sigma/\Delta\tau_{\text{отп}} \sim 100$ МПа/мин). На переходном периоде ($\tau_{\text{отп}} = 8-64$ мин) темп падения кривых $\sigma = f(\tau_{\text{отп}})$ замедляется из-за постепенного изменения моды разупрочнения. На II стадии отпуска (при $\tau_{\text{отп}} \geq 64$ мин) разупрочнение весьма незначительно ($\Delta\sigma/\Delta\tau_{\text{отп}} \sim 0,1$ МПа/мин), и даже после длительной выдержки в 3000 мин прочностные свойства стали сохраняются на относительно высоком уровне ($\sigma_{0,2} = 610$ МПа, $\sigma_{B} = 700$ МПа, $\sigma_{0,2}/\sigma_{B} = 0,87$).

ISSN 2410-9908

По данным ПЭМ и EBSD, на I стадии отпуска сохраняется унаследованная от мартенсита реечная структура, в которой ширина реек составляет $\bar{d}_p \sim 0,65$ мкм (рис. 2 *a*, *б*). С повышением продолжительности отпуска постепенное растворение карбидных частиц внутри реек приводит к высвобождению дислокаций, их перестройке и глубокой аннигиляции, а оставшиеся дислокации образуют субграницы. При $\tau_{\text{отп}} = 64$ мин субзерна видны вблизи границ пакетов и реек (рис. 2 *в*), а более длительный отпуск ($\tau_{\text{отп}} = 3000$ мин) приводит к формированию субструктуры со средним размером субзерен $\bar{d}_{c3} = 0,35$ мкм (рис. 2 *г*).

Diagnostics, Resource and Mechanics of materials and structures Issue 1, 2024

Оценка вкладов компонент упрочнения в предел текучести стали проводилась по уравнению [3]

$$\sigma_{0,2} = \sigma_0 + \Delta \sigma_{\mathrm{r},\mathrm{p}} + \Delta \sigma_{\mathrm{g}} + \Delta \sigma_{\mathrm{g},\mathrm{y}} + \Delta \sigma_{\mathrm{s}} + \Delta \sigma_{\mathrm{c}}, \tag{1}$$

где σ_0 – напряжение трения решетки; $\Delta \sigma_{\text{т.р.}}$ – твердорастворное упрочнение; $\Delta \sigma_{\text{д.у.}}$ – дислокационное упрочнение; $\Delta \sigma_{\text{д.у.}}$ – дисперсионное упрочнение внутриреечными частицами цементита и специальных карбидов; $\Delta \sigma_3$ – зернограничное упрочнение большеугловыми границами, субструктурное упрочнение $\Delta \sigma_c$ субзернами. Принималось, что сов окупный вклад напряжения трения решетки (σ_0 = 30 МПа) и твердорастворного упрочнения ($\Delta \sigma_{\text{т.р.}} \sim 60$ МПа) не зависит

от продолжительности отпуска и составляет 90 МПа, а падение $\sigma_{0,2}$ при отпуске определяется величиной других компонент (табл.).

Таблица

Основные параметры структуры (плотность дислокаций ρ_{d} , толщина реек t_{p} , размер субзерен d_{c}) и компоненты упрочнения $\Delta \sigma_{i}$ образцов, отпущенных при 650 °C с различной продолжительностью τ_{orn}

τ _{οτπ} ,	$\sigma_0 + \Delta \sigma_{\text{T.p.}},$	t _p ,	$\Delta \sigma_{3}$,	d _c ,	$\Delta \sigma_{c}$,	$\rho_{\pi} \cdot 10^{-11}$,	$\Delta \sigma_{\mathrm{d}}$,	$\Delta \sigma_{\text{д.у.}}, M \Pi a$		σ _т ,
МИН	МПа	МКМ	МΠа	МКМ	МΠа	см ⁻²	МΠа	Fe ₃ C	VC	МΠа
2	90	0,65	720	_		4	600	90	130	1630
4	90	0,65	720	_		2	450	I	110	1370
8	90	0,65	720	_	_	0,5	170	_	90	1070
16	90	0,65	720	_	_	0,1	60	-	70	940
64	90	0,65	400	0,35	210	0,01	40	-	50	790
3000	90	_	180	0,35	340	< 0,001	0	_	0	610

По данным рентгеноструктурного анализа плотность дислокаций в закаленном состоянии составила $\rho_{\pi} \sim 1 \cdot 10^{12}$ см⁻². При изотермическом отпуске относительно высокая плотность дислокаций сохраняется в металле вплоть до $\tau_{orn} = 2$ мин ($\rho_{\pi} \sim 4 \cdot 10^{11}$ см⁻²), затем существенно снижается, и при $\tau_{orn} \geq 64$ мин оставшиеся дислокации не вносят существенного вклада в напряжение начала текучести (рис. 1, табл.).

Вклад в упрочнение большеугловых границ бывших аустенитных зерен и пакетов проводился по уравнению Холла – Петча:

$$\Delta \sigma_3 = k_y \cdot d_3^{-0.5},\tag{2}$$

в котором коэффициент k_y для большеугловых границ принимался равным $k_y = 0,63$ МПа·мкм^{0,5}. Поскольку субграницы реек, закрепленные уже при кратковременном отпуске ленточными выделениями цементита, являются непрозрачными для дислокаций, то их вклад в упрочнение $\Delta \sigma_p$ эквивалентен таковому для большеугловых границ. Исходя из этого, компонента $\Delta \sigma_p$ рассчитывалась по уравнению (2), где за величину d_3 принималась средняя ширина реек \bar{d}_p ,

Kuzmina A. V. and Khotinov V. A. Evaluation of the strengthening components in 0.4% C-1.3%Mn-0.1%V steel after quenching and high temperature tempering // Diagnostics, Resource and Mechanics of materials and structures. -2024. - Iss. 1. - P. 11-17. - DOI: 10.17804/2410-9908.2024.1.011-017.

ISSN 2410-9908

Рис. 2. Микроструктура стали 38Г2Ф после закалки (*a*) и отпуска при 650 °С в течение 4 мин (б), 64 мин (в) и 3000 мин (г), РЭМ в режиме EBSD

Субструктурное упрочнение Δσ_с оценивалось по уравнению

$$\Delta \sigma_{\rm c} = k_{\rm y} \cdot d_{\rm c3}^{-1}, \tag{3}$$

в котором коэффициент k_y для границ с углом разориентировки $\Theta < 15^\circ$, по данным [7], принимался равным $k_y = 150,4$ МПа·мкм, d_{c_3} – средний размер субзерен, равный ~0,35 мкм по данным EBSD.

Дисперсионное упрочнение при отпуске исследованной стали обусловлено частицами цементита и ванадия. Выделение цементита происходит уже при нагреве до достижения температуры отпуска 650 °C, а VC – в первые несколько минут изотермической выдержки. Так как непосредственно из эксперимента величину $\Delta \sigma_{\text{д.у.}}$ с удовлетворительной точностью

Kuzmina A. V. and Khotinov V. A. Evaluation of the strengthening components in 0.4% C–1.3% Mn–0.1% V steel after quenching and high temperature tempering // Diagnostics, Resource and Mechanics of materials and structures. – 2024. – Iss. 1. – P. 11–17. – DOI: 10.17804/2410-9908.2024.1.011-017.

оценить не удалось, то вклад данной компоненты оценивался по разности между пределом текучести σ_{0,2} и другими действующими компонентами упрочнения.

Таким образом, результаты расчета свидетельствуют о том, что основными компонентами упрочнения, отвечающими за уровень прочностных свойств стали при отпуске, являются дислокационное (на I стадии) и субзеренное (на II стадии) упрочнения, относительная доля которых при изученных режимах отпуска составляет более 80 % от $\sigma_{0,2}$ (табл.). Главным фактором интенсивного разупрочнения стали 38Г2Ф на I стадии отпуска является снижение плотности дислокаций при коагуляции частиц Fe₃C, а слабая интенсивность разупрочнения на II стадии отпуска ($\tau_{orn} \ge 64$ мин) обусловлена высокой устойчивостью субзерен к росту.

4. Заключение

С помощью результатов механических испытаний, рентгеноструктурного анализа и изучения методами ПЭМ, РЭМ и EBSD микроструктуры стали 38Г2Ф после изотермического высокотемпературного отпуска показано, что разупрочнение металла ($\Delta\sigma/\Delta\tau_{oTII}$) проходит в две стадии: более интенсивное разупрочнение на I стадии (~100 МПа/мин) при $\tau_{oTII} \leq 8$ мин сменяется более слабым разупрочнением на II стадии (~0,1 МПа/мин) при $\tau_{oTII} \geq 64$ мин. Оценка компонент упрочнения по параметрам структуры позволила определить, что основной вклад (q ~ 80 %) в предел текучести стали 38Г2Ф на I стадии отпуска мартенсита вносит совокупное действие дислокационного и зернограничного (за счет границ реек) механизмов упрочнения, а на II стадии отпуска – субзеренное упрочнение.

Благодарность

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Программа развития Уральского федерального университета в рамках программы «Приоритет-2030»). Испытания проведены с использованием оборудования ЦКП УрФУ.

Литература

1. Курдюмов В. Г., Утевский Л. М., Энтин Р. И. Превращения в железе и стали. – М. : Наука, 1977. – 238 с.

2. Счастливцев В. М., Мирзаев Д. А., Яковлева И. Л. Структура термически обработанной стали. – М. : Металлургия, 1994. – 288 с.

3. Гольдштейн М. И., Грачев С. В., Векслер Ю. Г. Специальные стали. – М. : МИСиС, 1999. – 408 с.

4. Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: effect of heat treatment parameters / B. Jiang, M. Wu, M. Zhang, F. Zhao, Z. Zhao, Y. Liu // Materials Science and Engineering: A. – 2017. – Vol. 707. – P. 306–314. – DOI: 10.1016/j.msea.2017.09.062.

5. Effects of V–Nb microalloying on the microstructure and properties of spring steel under different quenching-tempering times / F. Liu, K. Chen, C. Kang, Z. Jiang, S. Ding // Journal of Materials Research and Technology. – 2022. – Vol. 19. – P. 779–793. – DOI: 1016/j.jmrt.2022.05.043.

6. Effect of quenching and tempering on structure and mechanical properties of a low-alloy 0.25C steel / E. Tkachev, S. Borisov, A. Belyakov, T. Kniaziuk, O. Vagina, S. Gaidar, R. Kaiby-shev // Materials Science and Engineering: A. – 2023. – Vol. 868. – P. 144757. – DOI: 1016/j.msea.2023.144757.

7. Фарбер В. М., Беленький Б. З., Гольдштейн М. И. Оценка прочности малоуглеродистых низколегированных сталей по структурным данным // ФММ. – 1975. – Т. 39, № 2. – С. 403–409.